Properties

Label 2.9.ag_s
Base field $\F_{3^{2}}$
Dimension $2$
$p$-rank $0$
Ordinary no
Supersingular yes
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{3^{2}}$
Dimension:  $2$
L-polynomial:  $( 1 - 3 x )^{2}( 1 + 9 x^{2} )$
  $1 - 6 x + 18 x^{2} - 54 x^{3} + 81 x^{4}$
Frobenius angles:  $0$, $0$, $\pm0.5$
Angle rank:  $0$ (numerical)
Jacobians:  $0$

This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $40$ $6400$ $493480$ $40960000$ $3458204200$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $4$ $82$ $676$ $6238$ $58564$ $531442$ $4778596$ $43020478$ $387381124$ $3486784402$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{8}}$.

Endomorphism algebra over $\F_{3^{2}}$
The isogeny class factors as 1.9.ag $\times$ 1.9.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{3^{2}}$
The base change of $A$ to $\F_{3^{8}}$ is 1.6561.agg 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $3$ and $\infty$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.9.g_s$2$2.81.a_agg
2.9.d_s$3$2.729.acc_cec
2.9.am_cc$4$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.9.g_s$2$2.81.a_agg
2.9.d_s$3$2.729.acc_cec
2.9.am_cc$4$(not in LMFDB)
2.9.a_as$4$(not in LMFDB)
2.9.a_s$4$(not in LMFDB)
2.9.m_cc$4$(not in LMFDB)
2.9.ad_s$6$(not in LMFDB)
2.9.a_a$8$(not in LMFDB)
2.9.aj_bk$12$(not in LMFDB)
2.9.ag_bb$12$(not in LMFDB)
2.9.ad_a$12$(not in LMFDB)
2.9.a_aj$12$(not in LMFDB)
2.9.a_j$12$(not in LMFDB)
2.9.d_a$12$(not in LMFDB)
2.9.g_bb$12$(not in LMFDB)
2.9.j_bk$12$(not in LMFDB)
2.9.ad_j$20$(not in LMFDB)
2.9.d_j$20$(not in LMFDB)