Properties

Label 2.9.ai_be
Base field $\F_{3^{2}}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{3^{2}}$
Dimension:  $2$
L-polynomial:  $( 1 - 3 x )^{2}( 1 - 2 x + 9 x^{2} )$
  $1 - 8 x + 30 x^{2} - 72 x^{3} + 81 x^{4}$
Frobenius angles:  $0$, $0$, $\pm0.391826552031$
Angle rank:  $1$ (numerical)
Jacobians:  $1$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $32$ $6144$ $524576$ $41779200$ $3429976352$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $2$ $78$ $722$ $6366$ $58082$ $529326$ $4781618$ $43045566$ $387377858$ $3486552078$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{2}}$.

Endomorphism algebra over $\F_{3^{2}}$
The isogeny class factors as 1.9.ag $\times$ 1.9.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.9.ae_g$2$2.81.ae_adm
2.9.e_g$2$2.81.ae_adm
2.9.i_be$2$2.81.ae_adm
2.9.b_m$3$2.729.ai_abnm

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.9.ae_g$2$2.81.ae_adm
2.9.e_g$2$2.81.ae_adm
2.9.i_be$2$2.81.ae_adm
2.9.b_m$3$2.729.ai_abnm
2.9.ac_s$4$(not in LMFDB)
2.9.c_s$4$(not in LMFDB)
2.9.af_y$6$(not in LMFDB)
2.9.ab_m$6$(not in LMFDB)
2.9.f_y$6$(not in LMFDB)