Properties

Label 2.9.ak_br
Base field $\F_{3^{2}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive no
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{3^{2}}$
Dimension:  $2$
L-polynomial:  $( 1 - 5 x + 9 x^{2} )^{2}$
  $1 - 10 x + 43 x^{2} - 90 x^{3} + 81 x^{4}$
Frobenius angles:  $\pm0.186429498677$, $\pm0.186429498677$
Angle rank:  $1$ (numerical)
Jacobians:  $1$

This isogeny class is not simple, not primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $25$ $5625$ $547600$ $44555625$ $3543225625$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $0$ $68$ $750$ $6788$ $60000$ $534158$ $4788000$ $43047428$ $387378750$ $3486569348$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{2}}$.

Endomorphism algebra over $\F_{3^{2}}$
The isogeny class factors as 1.9.af 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{3^{2}}$.

SubfieldPrimitive Model
$\F_{3}$2.3.a_af

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.9.a_ah$2$2.81.ao_id
2.9.k_br$2$2.81.ao_id
2.9.f_q$3$2.729.u_chy

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.9.a_ah$2$2.81.ao_id
2.9.k_br$2$2.81.ao_id
2.9.f_q$3$2.729.u_chy
2.9.a_h$4$(not in LMFDB)
2.9.af_q$6$(not in LMFDB)