This is a model for the curve $XY(X+Y)=Z^3$.
Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+16\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{3}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(0, 0)$ | $0$ | $3$ |
Integral points
\( \left(0, 0\right) \), \( \left(0, -1\right) \)
Invariants
Conductor: | $N$ | = | \( 27 \) | = | $3^{3}$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $-27$ | = | $-1 \cdot 3^{3} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( 0 \) | = | $0$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[(1+\sqrt{-3})/2]\) (potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-1.0464643562610104921410578866$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.3211174284280379149898691958$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.261859507142915$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 0$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $5.2999162508563498719410684990$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $3$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L(E,1)$ | ≈ | $0.58887958342848331910456316655 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 0.588879583 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 5.299916 \cdot 1.000000 \cdot 1}{3^2} \approx 0.588879583$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 3 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 3 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There is only one prime $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $1$ | $II$ | additive | -1 | 3 | 3 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3Cs.1.1 | 27.1944.55.31 |
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$3$ | additive | $2$ | \( 1 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 27.a
consists of 4 curves linked by isogenies of
degrees dividing 27.
Twists
This elliptic curve is its own minimal quadratic twist.
This elliptic curve is its own minimal sextic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z \oplus \Z/3\Z\) | 2.0.3.1-81.1-CMa1 |
$3$ | 3.1.108.1 | \(\Z/6\Z\) | not in database |
$3$ | \(\Q(\zeta_{9})^+\) | \(\Z/9\Z\) | 3.3.81.1-27.1-a4 |
$6$ | 6.0.34992.1 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
$6$ | \(\Q(\zeta_{9})\) | \(\Z/3\Z \oplus \Z/9\Z\) | not in database |
$9$ | 9.3.918330048.1 | \(\Z/18\Z\) | not in database |
$12$ | 12.2.15045919506432.1 | \(\Z/12\Z\) | not in database |
$12$ | 12.0.241162079949.1 | \(\Z/3\Z \oplus \Z/21\Z\) | not in database |
$18$ | 18.0.4052555153018976267.1 | \(\Z/9\Z \oplus \Z/9\Z\) | not in database |
$18$ | 18.0.2529990231179046912.1 | \(\Z/6\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive.
Iwasawa invariants
$p$ | 2 | 3 |
---|---|---|
Reduction type | ss | add |
$\lambda$-invariant(s) | 0,5 | - |
$\mu$-invariant(s) | 0,0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
Additional information
An explicit birational isomorphism from $XY(X+Y)=Z^3$ to $y^2+y = x^3$ is $(x,y) = (Z/X, Y/X)$. The $3$-isogeny from the Fermat cubic $X_1^3 + Y_1^3 = Z_1^3$ is simply $(X:Y:Z) = (X_1^3 : Y_1^3 : X_1 Y_1 Z_1)$.