Show commands: Magma
Group invariants
Abstract group: | $C_2^9.C_5^2:\OD_{16}$ |
| |
Order: | $204800=2^{13} \cdot 5^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $40$ |
| |
Transitive number $t$: | $106038$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,15,12,38,27,8,18,23)(2,16,11,37,28,7,17,24)(3,13,9,40,25,5,19,21)(4,14,10,39,26,6,20,22)(29,36,32,33)(30,35,31,34)$, $(1,4)(2,3)(5,29,24,40)(6,30,23,39)(7,32,21,37)(8,31,22,38)(9,18,33,25,10,17,34,26)(11,20,36,28,12,19,35,27)(13,15)(14,16)$, $(1,22,26,13,34,39,12,5)(2,21,25,14,33,40,11,6)(3,24,28,15,36,37,9,8)(4,23,27,16,35,38,10,7)(17,31,19,30)(18,32,20,29)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $C_4\times C_2$ x 6, $C_2^3$ $16$: $C_8:C_2$ x 2, $C_4\times C_2^2$ $32$: $C_2 \times (C_8:C_2)$ $400$: $(C_5^2 : C_8):C_2$ $800$: 20T162 $102400$: 20T770 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 5: None
Degree 8: None
Degree 10: $(C_5^2 : C_8):C_2$
Low degree siblings
20T865 x 2, 20T866 x 2, 40T106016 x 2, 40T106033 x 2, 40T106035 x 2, 40T106037 x 2, 40T106038, 40T106081, 40T106082, 40T106120 x 2, 40T106121 x 2, 40T106122 x 2, 40T106123 x 2, 40T106128 x 2, 40T106129 x 2, 40T106130 x 2, 40T106131 x 2, 40T106226 x 2, 40T106228 x 2Siblings are shown with degree $\leq 47$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy classes
Conjugacy classes not computed
Character table
98 x 98 character table
Regular extensions
Data not computed