Properties

Label 20.2
Level 20
Weight 2
Dimension 3
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 48
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(48\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(20))\).

Total New Old
Modular forms 22 11 11
Cusp forms 3 3 0
Eisenstein series 19 8 11

Trace form

\( 3 q - 2 q^{2} - 2 q^{3} - 5 q^{5} + 2 q^{7} + 4 q^{8} + q^{9} + 6 q^{10} + 2 q^{15} - 8 q^{16} - 6 q^{18} - 4 q^{19} - 4 q^{20} - 4 q^{21} + 6 q^{23} + 7 q^{25} + 4 q^{26} + 4 q^{27} + 6 q^{29} - 4 q^{31}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
20.2.a \(\chi_{20}(1, \cdot)\) 20.2.a.a 1 1
20.2.c \(\chi_{20}(9, \cdot)\) None 0 1
20.2.e \(\chi_{20}(3, \cdot)\) 20.2.e.a 2 2