Properties

Label 4900.2.e.f
Level $4900$
Weight $2$
Character orbit 4900.e
Analytic conductor $39.127$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4900,2,Mod(2549,4900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4900.2549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4900 = 2^{2} \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4900.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.1266969904\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} - q^{9} - \beta q^{13} - 3 \beta q^{17} - 4 q^{19} + 3 \beta q^{23} + 2 \beta q^{27} - 6 q^{29} + 4 q^{31} - \beta q^{37} + 4 q^{39} - 6 q^{41} - 5 \beta q^{43} - 3 \beta q^{47} + 12 q^{51} + \cdots + \beta q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9} - 8 q^{19} - 12 q^{29} + 8 q^{31} + 8 q^{39} - 12 q^{41} + 24 q^{51} + 24 q^{59} - 4 q^{61} - 24 q^{69} - 24 q^{71} - 16 q^{79} - 22 q^{81} - 12 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(1177\) \(2451\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2549.1
1.00000i
1.00000i
0 2.00000i 0 0 0 0 0 −1.00000 0
2549.2 0 2.00000i 0 0 0 0 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4900.2.e.f 2
5.b even 2 1 inner 4900.2.e.f 2
5.c odd 4 1 980.2.a.h 1
5.c odd 4 1 4900.2.a.e 1
7.b odd 2 1 100.2.c.a 2
15.e even 4 1 8820.2.a.g 1
20.e even 4 1 3920.2.a.h 1
21.c even 2 1 900.2.d.c 2
28.d even 2 1 400.2.c.b 2
35.c odd 2 1 100.2.c.a 2
35.f even 4 1 20.2.a.a 1
35.f even 4 1 100.2.a.a 1
35.k even 12 2 980.2.i.i 2
35.l odd 12 2 980.2.i.c 2
56.e even 2 1 1600.2.c.e 2
56.h odd 2 1 1600.2.c.d 2
84.h odd 2 1 3600.2.f.j 2
105.g even 2 1 900.2.d.c 2
105.k odd 4 1 180.2.a.a 1
105.k odd 4 1 900.2.a.b 1
140.c even 2 1 400.2.c.b 2
140.j odd 4 1 80.2.a.b 1
140.j odd 4 1 400.2.a.c 1
280.c odd 2 1 1600.2.c.d 2
280.n even 2 1 1600.2.c.e 2
280.s even 4 1 320.2.a.f 1
280.s even 4 1 1600.2.a.c 1
280.y odd 4 1 320.2.a.a 1
280.y odd 4 1 1600.2.a.w 1
315.cb even 12 2 1620.2.i.h 2
315.cf odd 12 2 1620.2.i.b 2
385.l odd 4 1 2420.2.a.a 1
420.o odd 2 1 3600.2.f.j 2
420.w even 4 1 720.2.a.h 1
420.w even 4 1 3600.2.a.be 1
455.n odd 4 1 3380.2.f.b 2
455.s even 4 1 3380.2.a.c 1
455.w odd 4 1 3380.2.f.b 2
560.r even 4 1 1280.2.d.c 2
560.u odd 4 1 1280.2.d.g 2
560.bm odd 4 1 1280.2.d.g 2
560.bn even 4 1 1280.2.d.c 2
595.l even 4 1 5780.2.c.a 2
595.p even 4 1 5780.2.a.f 1
595.r even 4 1 5780.2.c.a 2
665.n odd 4 1 7220.2.a.f 1
840.bm even 4 1 2880.2.a.f 1
840.bp odd 4 1 2880.2.a.m 1
1540.x even 4 1 9680.2.a.ba 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.2.a.a 1 35.f even 4 1
80.2.a.b 1 140.j odd 4 1
100.2.a.a 1 35.f even 4 1
100.2.c.a 2 7.b odd 2 1
100.2.c.a 2 35.c odd 2 1
180.2.a.a 1 105.k odd 4 1
320.2.a.a 1 280.y odd 4 1
320.2.a.f 1 280.s even 4 1
400.2.a.c 1 140.j odd 4 1
400.2.c.b 2 28.d even 2 1
400.2.c.b 2 140.c even 2 1
720.2.a.h 1 420.w even 4 1
900.2.a.b 1 105.k odd 4 1
900.2.d.c 2 21.c even 2 1
900.2.d.c 2 105.g even 2 1
980.2.a.h 1 5.c odd 4 1
980.2.i.c 2 35.l odd 12 2
980.2.i.i 2 35.k even 12 2
1280.2.d.c 2 560.r even 4 1
1280.2.d.c 2 560.bn even 4 1
1280.2.d.g 2 560.u odd 4 1
1280.2.d.g 2 560.bm odd 4 1
1600.2.a.c 1 280.s even 4 1
1600.2.a.w 1 280.y odd 4 1
1600.2.c.d 2 56.h odd 2 1
1600.2.c.d 2 280.c odd 2 1
1600.2.c.e 2 56.e even 2 1
1600.2.c.e 2 280.n even 2 1
1620.2.i.b 2 315.cf odd 12 2
1620.2.i.h 2 315.cb even 12 2
2420.2.a.a 1 385.l odd 4 1
2880.2.a.f 1 840.bm even 4 1
2880.2.a.m 1 840.bp odd 4 1
3380.2.a.c 1 455.s even 4 1
3380.2.f.b 2 455.n odd 4 1
3380.2.f.b 2 455.w odd 4 1
3600.2.a.be 1 420.w even 4 1
3600.2.f.j 2 84.h odd 2 1
3600.2.f.j 2 420.o odd 2 1
3920.2.a.h 1 20.e even 4 1
4900.2.a.e 1 5.c odd 4 1
4900.2.e.f 2 1.a even 1 1 trivial
4900.2.e.f 2 5.b even 2 1 inner
5780.2.a.f 1 595.p even 4 1
5780.2.c.a 2 595.l even 4 1
5780.2.c.a 2 595.r even 4 1
7220.2.a.f 1 665.n odd 4 1
8820.2.a.g 1 15.e even 4 1
9680.2.a.ba 1 1540.x even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4900, [\chi])\):

\( T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{19} + 4 \) Copy content Toggle raw display
\( T_{31} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 36 \) Copy content Toggle raw display
$19$ \( (T + 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 100 \) Copy content Toggle raw display
$47$ \( T^{2} + 36 \) Copy content Toggle raw display
$53$ \( T^{2} + 36 \) Copy content Toggle raw display
$59$ \( (T - 12)^{2} \) Copy content Toggle raw display
$61$ \( (T + 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 4 \) Copy content Toggle raw display
$71$ \( (T + 12)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 4 \) Copy content Toggle raw display
$79$ \( (T + 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 36 \) Copy content Toggle raw display
$89$ \( (T + 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less