⌂
→
Modular forms
→
Hilbert
Citation
·
Feedback
·
Hide Menu
Hilbert modular forms
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Hilbert modular form labels
The database currently contains 368,356
Hilbert modular forms
over 400
totally real number fields
of
degree
2 to 6. Here are some
further statistics
.
Browse
By
quadratic base field
:
\(\Q(\sqrt{2})\)
\(\Q(\sqrt{3})\)
\(\Q(\sqrt{5})\)
\(\Q(\sqrt{6})\)
\(\Q(\sqrt{7})\)
\(\Q(\sqrt{10})\)
\(\Q(\sqrt{11})\)
\(\Q(\sqrt{13})\)
\(\Q(\sqrt{14})\)
\(\Q(\sqrt{15})\)
$\cdots$
By
cubic base field
:
$\Q(\zeta_7)^+$
$\Q(\zeta_9)^+$
3.3.148.1
3.3.169.1
3.3.229.1
3.3.257.1
3.3.316.1
$\cdots$
By
quartic base field
:
4.4.725.1
$\Q(\zeta_{15})^+$
$\Q(\sqrt{2},\sqrt{5})$
4.4.1957.1
$\Q(\zeta_{20})^+$
$\Q(\zeta_{16})^+$
4.4.2225.1
By
quintic base field
:
5.5.14641.1
5.5.24217.1
5.5.36497.1
5.5.38569.1
5.5.65657.1
5.5.70601.1
$\cdots$
By
sextic base field
:
6.6.300125.1
$\Q(\zeta_{13})^+$
6.6.434581.1
$\Q(\zeta_{21})^+$
6.6.485125.1
6.6.592661.1
$\cdots$
Some
interesting Hilbert modular forms
or a
random Hilbert modular form
Search
Base field
e.g. either a totally real field label, e.g. 2.2.5.1 for \(\mathbb{Q}(\sqrt{5})\), or a nickname, e.g. Qsqrt5
Base field degree
e.g. 2, 2..3
Base field discriminant
e.g. 5 or 1-100
Level norm
e.g. 1 or 1-100
Weight
e.g. 2 or [2,2]
Dimension
e.g. 1 or 2
Base change
exclude
only
Results to display
CM
exclude
only
Field bad primes
include
exclude
exactly
subset
e.g. 5,13
Level bad primes
include
exclude
exactly
subset
e.g. 5,13
Display:
List of forms
Random form
Find
Label
Find
e.g. 2.2.5.1-31.1-a