⌂
→
Modular forms
→
Hilbert
Citation
·
Feedback
·
Hide Menu
Hilbert modular forms
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Belyi maps
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Abstract groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Hilbert modular form labels
The database currently contains $368{,}356$
Hilbert modular forms
over 400
totally real number fields
of
degree
2 to 6. Here are some
further statistics
.
Browse
By
quadratic base field
:
\(\Q(\sqrt{2})\)
\(\Q(\sqrt{3})\)
\(\Q(\sqrt{5})\)
\(\Q(\sqrt{6})\)
\(\Q(\sqrt{7})\)
\(\Q(\sqrt{10})\)
\(\Q(\sqrt{11})\)
\(\Q(\sqrt{13})\)
\(\Q(\sqrt{14})\)
\(\Q(\sqrt{15})\)
$\cdots$
By
cubic base field
:
$\Q(\zeta_7)^+$
$\Q(\zeta_9)^+$
3.3.148.1
3.3.169.1
3.3.229.1
3.3.257.1
3.3.316.1
$\cdots$
By
quartic base field
:
4.4.725.1
$\Q(\zeta_{15})^+$
$\Q(\sqrt{2},\sqrt{5})$
4.4.1957.1
$\Q(\zeta_{20})^+$
$\Q(\zeta_{16})^+$
4.4.2225.1
By
quintic base field
:
5.5.14641.1
5.5.24217.1
5.5.36497.1
5.5.38569.1
5.5.65657.1
5.5.70601.1
$\cdots$
By
sextic base field
:
6.6.300125.1
$\Q(\zeta_{13})^+$
6.6.434581.1
$\Q(\zeta_{21})^+$
6.6.485125.1
6.6.592661.1
$\cdots$
Some
interesting Hilbert modular forms
or a
random Hilbert modular form
Search
Base field
e.g. either a totally real field label, e.g. 2.2.5.1 for \(\mathbb{Q}(\sqrt{5})\), or a nickname, e.g. Qsqrt5
Base field degree
e.g. 2, 2..3
Base field discriminant
e.g. 5 or 1-100
Level norm
e.g. 1 or 1-100
Weight
e.g. 2 or [2,2]
Dimension
e.g. 1 or 2
Base change
exclude
only
Results to display
CM
exclude
only
Field bad primes
include
exclude
exactly
subset
e.g. 5,13
Level bad primes
include
exclude
exactly
subset
e.g. 5,13
Display:
List of forms
Random form
Find
Label
Find
e.g. 2.2.5.1-31.1-a