Properties

Label 16.4
Order \( 2^{4} \)
Exponent \( 2^{2} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2^{2} \)
$\card{\mathrm{Aut}(G)}$ \( 2^{5} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $8$
Trans deg. $16$
Rank $2$

Related objects

Downloads

Learn more

Group information

Description:$C_4:C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism group:$C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \) (generators)
Outer automorphisms:$D_4$, of order \(8\)\(\medspace = 2^{3} \)
Composition factors:$C_2$ x 4
Nilpotency class:$2$
Derived length:$2$

This group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Group statistics

Order 1 2 4
Elements 1 3 12 16
Conjugacy classes   1 3 6 10
Divisions 1 3 4 8
Autjugacy classes 1 3 2 6

Dimension 1 2
Irr. complex chars.   8 2 10
Irr. rational chars. 4 4 8

Minimal Presentations

Permutation degree:$8$
Transitive degree:$16$
Rank: $2$
Inequivalent generating pairs: $3$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none none none
Arbitrary 3 4 4

Constructions

Presentation: $\langle a, b \mid a^{4}=b^{4}=1, b^{a}=b^{3} \rangle$ Copy content Toggle raw display
Permutation group: $\langle(2,4)(5,6,7,8), (1,2,3,4)(5,7)(6,8), (1,3)(2,4), (5,7)(6,8)\rangle$ Copy content Toggle raw display
Matrix group:$\left\langle \left(\begin{array}{rrrr} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{array}\right) \right\rangle \subseteq \GL_{4}(\Z)$
$\left\langle \left(\begin{array}{rrr} 1 & 0 & 0 \\ 4 & 1 & 1 \\ 1 & 3 & 4 \end{array}\right), \left(\begin{array}{rrr} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 2 & 1 & 3 \end{array}\right), \left(\begin{array}{rrr} 4 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 0 & 1 \end{array}\right), \left(\begin{array}{rrr} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{array}\right) \right\rangle \subseteq \GL_{3}(\F_{5})$
Transitive group: 16T8 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $C_4$ $\,\rtimes\,$ $C_4$ (2) more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_2$ . $Q_8$ $C_2$ . $D_4$ $C_2^2$ . $C_2^2$ $(C_2\times C_4)$ . $C_2$ (3) all 5

Elements of the group are displayed as words in the generators from the presentation given above.

Homology

Abelianization: $C_{2} \times C_{4} $
Schur multiplier: $C_{2}$
Commutator length: $1$

Subgroups

There are 15 subgroups in 13 conjugacy classes, 11 normal (7 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2^2$ $G/Z \simeq$ $C_2^2$
Commutator: $G' \simeq$ $C_2$ $G/G' \simeq$ $C_2\times C_4$
Frattini: $\Phi \simeq$ $C_2^2$ $G/\Phi \simeq$ $C_2^2$
Fitting: $\operatorname{Fit} \simeq$ $C_4:C_4$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_4:C_4$ $G/R \simeq$ $C_1$
Socle: $\operatorname{soc} \simeq$ $C_2^2$ $G/\operatorname{soc} \simeq$ $C_2^2$
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_4:C_4$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $C_4:C_4$ $\rhd$ $C_2$ $\rhd$ $C_1$
Chief series $C_4:C_4$ $\rhd$ $C_2\times C_4$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Lower central series $C_4:C_4$ $\rhd$ $C_2$ $\rhd$ $C_1$
Upper central series $C_1$ $\lhd$ $C_2^2$ $\lhd$ $C_4:C_4$

Supergroups

This group is a maximal subgroup of 126 larger groups in the database.

This group is a maximal quotient of 142 larger groups in the database.

Character theory

Complex character table

1A 2A 2B 2C 4A 4B 4C1 4C-1 4D1 4D-1
Size 1 1 1 1 2 2 2 2 2 2
2 P 1A 1A 1A 1A 2B 2C 2C 2C 2B 2C
Type
16.4.1a R 1 1 1 1 1 1 1 1 1 1
16.4.1b R 1 1 1 1 1 1 1 1 1 1
16.4.1c R 1 1 1 1 1 1 1 1 1 1
16.4.1d R 1 1 1 1 1 1 1 1 1 1
16.4.1e1 C 1 1 1 1 1 i i i 1 i
16.4.1e2 C 1 1 1 1 1 i i i 1 i
16.4.1f1 C 1 1 1 1 1 i i i 1 i
16.4.1f2 C 1 1 1 1 1 i i i 1 i
16.4.2a R 2 2 2 2 0 0 0 0 0 0
16.4.2b S 2 2 2 2 0 0 0 0 0 0

Rational character table

1A 2A 2B 2C 4A 4B 4C 4D
Size 1 1 1 1 2 2 4 4
2 P 1A 1A 1A 1A 2B 2C 2C 2B
Schur
16.4.1a 1 1 1 1 1 1 1 1
16.4.1b 1 1 1 1 1 1 1 1
16.4.1c 1 1 1 1 1 1 1 1
16.4.1d 1 1 1 1 1 1 1 1
16.4.1e 2 2 2 2 2 0 0 2
16.4.1f 2 2 2 2 2 0 0 2
16.4.2a 2 2 2 2 0 0 0 0
16.4.2b 2 2 2 2 2 0 0 0 0