Properties

Label 2048.cok
Order \( 2^{11} \)
Exponent \( 2^{3} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \)
$\card{\mathrm{Aut}(G)}$ \( 2^{15} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \)
Perm deg. $16$
Trans deg. $16$
Rank $3$

Related objects

Downloads

Learn more

Group information

Description:$(C_2\times C_4^3):D_8$
Order: \(2048\)\(\medspace = 2^{11} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism group:$(C_5^3\times C_{10}).Q_8$, of order \(32768\)\(\medspace = 2^{15} \) (generators)
Outer automorphisms:$C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
Composition factors:$C_2$ x 11
Nilpotency class:$7$
Derived length:$3$

This group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Group statistics

Order 1 2 4 8
Elements 1 271 752 1024 2048
Conjugacy classes   1 15 25 12 53
Divisions 1 15 25 10 51
Autjugacy classes 1 10 11 3 25

Dimension 1 2 4 8 16
Irr. complex chars.   8 10 13 20 2 53
Irr. rational chars. 8 6 15 20 2 51

Minimal Presentations

Permutation degree:$16$
Transitive degree:$16$
Rank: $3$
Inequivalent generating triples: $86016$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 8 8 8
Arbitrary not computed not computed not computed

Constructions

Presentation: ${\langle a, b, c, d, e, f \mid b^{8}=c^{4}=d^{2}=e^{4}=f^{4}=[a,f]=[c,d]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Permutation group:Degree $16$ $\langle(1,7,13,10,2,8,14,9)(3,5,16,12)(4,6,15,11), (1,10,3,11,2,9,4,12)(5,13,8,15,6,14,7,16), (1,3)(2,4)(5,10,7,11,6,9,8,12)\rangle$ Copy content Toggle raw display
Transitive group: 16T1446 16T1488 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $(C_2\times C_4^3)$ $\,\rtimes\,$ $D_8$ $(C_4^2:C_2^3)$ $\,\rtimes\,$ $D_8$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $(C_2^5:D_4)$ . $D_4$ $C_2^5$ . $(D_4:D_4)$ $C_2^4$ . $(C_2\wr D_4)$ $(C_2^5.C_2^3)$ . $D_4$ all 19

Elements of the group are displayed as permutations of degree 16.

Homology

Abelianization: $C_{2}^{3} $
Schur multiplier: $C_{2}^{5}$
Commutator length: $1$

Subgroups

There are 40632 subgroups in 3320 conjugacy classes, 40 normal (24 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $(C_2^2\times C_4^2):D_8$
Commutator: $G' \simeq$ $C_2^5.C_2^3$ $G/G' \simeq$ $C_2^3$
Frattini: $\Phi \simeq$ $C_2^5.C_2^3$ $G/\Phi \simeq$ $C_2^3$
Fitting: $\operatorname{Fit} \simeq$ $C_2^5.C_2{\rm wrC}_2^2$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_2^5.C_2{\rm wrC}_2^2$ $G/R \simeq$ $C_1$
Socle: $\operatorname{soc} \simeq$ $C_2$ $G/\operatorname{soc} \simeq$ $(C_2^2\times C_4^2):D_8$
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.C_2{\rm wrC}_2^2$

Subgroup diagram and profile

Series

Derived series $C_2^5.C_2{\rm wrC}_2^2$ $\rhd$ $C_2^5.C_2^3$ $\rhd$ $C_2^4$ $\rhd$ $C_1$
Chief series $C_2^5.C_2{\rm wrC}_2^2$ $\rhd$ $C_2^4.C_2^4.C_2^2$ $\rhd$ $C_2^4.C_2^4.C_2$ $\rhd$ $C_2^5.C_2^3$ $\rhd$ $C_2^5:C_4$ $\rhd$ $D_4\times C_2^3$ $\rhd$ $C_2^5$ $\rhd$ $C_2^4$ $\rhd$ $C_2^3$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Lower central series $C_2^5.C_2{\rm wrC}_2^2$ $\rhd$ $C_2^5.C_2^3$ $\rhd$ $D_4\times C_2^3$ $\rhd$ $C_2^4$ $\rhd$ $C_2^3$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Upper central series $C_1$ $\lhd$ $C_2$ $\lhd$ $C_2^2$ $\lhd$ $C_2^3$ $\lhd$ $C_2^5$ $\lhd$ $D_4\times C_2^3$ $\lhd$ $C_2^5.C_2^3$ $\lhd$ $C_2^5.C_2{\rm wrC}_2^2$

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 4 larger groups in the database.

Character theory

Complex character table

See the $53 \times 53$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $51 \times 51$ rational character table.