Properties

Label 256.334
Order \( 2^{8} \)
Exponent \( 2^{4} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 2^{2} \)
$\card{\mathrm{Aut}(G)}$ \( 2^{10} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $64$
Trans deg. $64$
Rank $2$

Related objects

Downloads

Learn more

Group information

Description:$(C_2^2\times C_8).D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Automorphism group:$C_4\times D_4^2:C_2^2$, of order \(1024\)\(\medspace = 2^{10} \) (generators)
Outer automorphisms:$C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
Composition factors:$C_2$ x 8
Nilpotency class:$5$
Derived length:$3$

This group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Group statistics

Order 1 2 4 8 16
Elements 1 31 64 32 128 256
Conjugacy classes   1 6 9 6 12 34
Divisions 1 6 7 2 2 18
Autjugacy classes 1 5 6 2 2 16

Dimension 1 2 4 32
Irr. complex chars.   16 4 14 0 34
Irr. rational chars. 4 4 9 1 18

Minimal Presentations

Permutation degree:$64$
Transitive degree:$64$
Rank: $2$
Inequivalent generating pairs: $24$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 4 8 32
Arbitrary 4 8 32

Constructions

Presentation: ${\langle a, b, c, d, e \mid b^{2}=c^{2}=d^{4}=e^{4}=[a,e]=[b,c]=[b,e]=[c,e]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Permutation group:Degree $64$ $\langle(1,40,8,36,4,38,6,34,2,39,7,35,3,37,5,33)(9,48,16,44,12,46,14,42,10,47,15,43,11,45,13,41) \!\cdots\! \rangle$ Copy content Toggle raw display
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $(C_2^3.\OD_{16})$ $\,\rtimes\,$ $C_2$ $(C_2^3.\OD_{16})$ $\,\rtimes\,$ $C_2$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_4$ . $(C_2\wr C_4)$ (2) $(C_2^2\times C_8)$ . $D_4$ $(D_4:C_2^2)$ . $C_8$ (2) $(C_4.C_2^4)$ . $C_4$ all 17

Elements of the group are displayed as words in the generators from the presentation given above.

Homology

Abelianization: $C_{2} \times C_{8} $
Schur multiplier: $C_{2}^{2}$
Commutator length: $1$

Subgroups

There are 587 subgroups in 159 conjugacy classes, 23 normal (21 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_4$ $G/Z \simeq$ $C_2\wr C_4$
Commutator: $G' \simeq$ $C_2\times D_4$ $G/G' \simeq$ $C_2\times C_8$
Frattini: $\Phi \simeq$ $(C_2^2\times C_8):C_2$ $G/\Phi \simeq$ $C_2^2$
Fitting: $\operatorname{Fit} \simeq$ $(C_2^2\times C_8).D_4$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $(C_2^2\times C_8).D_4$ $G/R \simeq$ $C_1$
Socle: $\operatorname{soc} \simeq$ $C_2$ $G/\operatorname{soc} \simeq$ $C_2^4:C_8$
2-Sylow subgroup: $P_{ 2 } \simeq$ $(C_2^2\times C_8).D_4$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $(C_2^2\times C_8).D_4$ $\rhd$ $C_2\times D_4$ $\rhd$ $C_2$ $\rhd$ $C_1$
Chief series $(C_2^2\times C_8).D_4$ $\rhd$ $(C_2^2\times C_8):C_2^2$ $\rhd$ $(C_2^2\times C_8):C_2$ $\rhd$ $D_4:C_2^2$ $\rhd$ $C_2^2\times C_4$ $\rhd$ $C_2\times C_4$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Lower central series $(C_2^2\times C_8).D_4$ $\rhd$ $C_2\times D_4$ $\rhd$ $C_2\times C_4$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Upper central series $C_1$ $\lhd$ $C_4$ $\lhd$ $C_2\times C_4$ $\lhd$ $C_2^2\times C_4$ $\lhd$ $(C_2^2\times C_8):C_2$ $\lhd$ $(C_2^2\times C_8).D_4$

Supergroups

Character theory

Complex character table

See the $34 \times 34$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $18 \times 18$ rational character table.