Properties

Label 4096.bqo
Order \( 2^{12} \)
Exponent \( 2^{3} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \)
$\card{\mathrm{Aut}(G)}$ \( 2^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \)
Perm deg. $16$
Trans deg. $16$
Rank $3$

Related objects

Downloads

Learn more

Group information

Description:$(C_2^2\times D_4^2):\SD_{16}$
Order: \(4096\)\(\medspace = 2^{12} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism group:$C_{100}\times D_{25}$, of order \(65536\)\(\medspace = 2^{16} \) (generators)
Outer automorphisms:$C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
Composition factors:$C_2$ x 12
Nilpotency class:$8$
Derived length:$3$

This group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Group statistics

Order 1 2 4 8
Elements 1 335 1712 2048 4096
Conjugacy classes   1 16 27 14 58
Divisions 1 16 27 10 54
Autjugacy classes 1 11 15 4 31

Dimension 1 2 4 8 16 32
Irr. complex chars.   8 10 13 16 11 0 58
Irr. rational chars. 8 6 13 17 9 1 54

Minimal Presentations

Permutation degree:$16$
Transitive degree:$16$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 8 8 8
Arbitrary not computed not computed not computed

Constructions

Presentation: ${\langle a, b, c, d, e, f, g \mid b^{8}=c^{2}=d^{4}=e^{4}=f^{2}=g^{4}=[a,f]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Permutation group:Degree $16$ $\langle(1,10,13,7)(2,9,14,8)(3,11,15,5,4,12,16,6), (1,14,2,13)(3,15)(4,16)(5,11,7,9)(6,12,8,10), (1,11)(2,12)(3,9,4,10)(5,14,6,13)(7,15)(8,16)\rangle$ Copy content Toggle raw display
Transitive group: 16T1640 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $(C_2^2\times D_4^2)$ $\,\rtimes\,$ $\SD_{16}$ $(C_2^2.D_4^2)$ $\,\rtimes\,$ $\SD_{16}$ $((C_2\times C_4^3).D_8)$ $\,\rtimes\,$ $C_2$ $((C_2^2\times D_4^2):Q_8)$ $\,\rtimes\,$ $C_2$ all 7
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_2^5$ . $(C_2\wr D_4)$ $(C_2^5.D_4^2)$ . $C_2$ $(C_2^5.C_2^4)$ . $D_4$ $(C_2^5.C_4^2)$ . $D_4$ all 22

Elements of the group are displayed as permutations of degree 16.

Homology

Abelianization: $C_{2}^{3} $
Schur multiplier: $C_{2}^{4}$
Commutator length: $1$

Subgroups

There are 114227 subgroups in 6485 conjugacy classes, 41 normal (25 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_5^4:(C_2^2\times \OD_{16})$
Commutator: $G' \simeq$ $C_2^4.C_2^4.C_2$ $G/G' \simeq$ $C_2^3$
Frattini: $\Phi \simeq$ $C_2^4.C_2^4.C_2$ $G/\Phi \simeq$ $C_2^3$
Fitting: $\operatorname{Fit} \simeq$ $(C_2^2\times D_4^2):\SD_{16}$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $(C_2^2\times D_4^2):\SD_{16}$ $G/R \simeq$ $C_1$
Socle: $\operatorname{soc} \simeq$ $C_2$ $G/\operatorname{soc} \simeq$ $C_5^4:(C_2^2\times \OD_{16})$
2-Sylow subgroup: $P_{ 2 } \simeq$ $(C_2^2\times D_4^2):\SD_{16}$

Subgroup diagram and profile

Series

Derived series $(C_2^2\times D_4^2):\SD_{16}$ $\rhd$ $C_2^4.C_2^4.C_2$ $\rhd$ $C_2^3\times C_4$ $\rhd$ $C_1$
Chief series $(C_2^2\times D_4^2):\SD_{16}$ $\rhd$ $C_2^5.D_4^2$ $\rhd$ $C_2^4.C_2^5.C_2$ $\rhd$ $C_2^4.C_2^4.C_2$ $\rhd$ $C_4^3:C_2^2$ $\rhd$ $C_4^2:C_2^3$ $\rhd$ $D_4\times C_2^3$ $\rhd$ $C_2^3\times C_4$ $\rhd$ $C_2^4$ $\rhd$ $C_2^3$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Lower central series $(C_2^2\times D_4^2):\SD_{16}$ $\rhd$ $C_2^4.C_2^4.C_2$ $\rhd$ $C_4^2:C_2^3$ $\rhd$ $C_2^3\times C_4$ $\rhd$ $C_2^4$ $\rhd$ $C_2^3$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Upper central series $C_1$ $\lhd$ $C_2$ $\lhd$ $C_2^2$ $\lhd$ $C_2^3$ $\lhd$ $C_2^4$ $\lhd$ $D_4\times C_2^3$ $\lhd$ $C_4^2:C_2^3$ $\lhd$ $C_2^4.C_2^4.C_2$ $\lhd$ $(C_2^2\times D_4^2):\SD_{16}$

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Complex character table

See the $58 \times 58$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $54 \times 54$ rational character table.