Properties

Label 48.45
Order \( 2^{4} \cdot 3 \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 3 \)
$\card{Z(G)}$ \( 2^{2} \cdot 3 \)
$\card{\mathrm{Aut}(G)}$ \( 2^{7} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \)
Perm deg. $9$
Trans deg. $24$
Rank $3$

Related objects

Downloads

Learn more

Group information

Description:$C_6\times D_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism group:$C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \) (generators)
Outer automorphisms:$C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
Composition factors:$C_2$ x 4, $C_3$
Nilpotency class:$2$
Derived length:$2$

This group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Group statistics

Order 1 2 3 4 6 12
Elements 1 11 2 4 22 8 48
Conjugacy classes   1 7 2 2 14 4 30
Divisions 1 7 1 2 7 2 20
Autjugacy classes 1 3 1 1 3 1 10

Dimension 1 2 4
Irr. complex chars.   24 6 0 30
Irr. rational chars. 8 10 2 20

Minimal Presentations

Permutation degree:$9$
Transitive degree:$24$
Rank: $3$
Inequivalent generating triples: $273$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none none none
Arbitrary 3 4 4

Constructions

Presentation: $\langle a, b, c \mid a^{2}=b^{2}=c^{12}=[a,b]=[a,c]=1, c^{b}=c^{7} \rangle$ Copy content Toggle raw display
Permutation group: $\langle(1,2)(3,4), (2,4)(5,6), (1,3)(2,4)(5,6), (7,9,8), (1,3)(2,4)\rangle$ Copy content Toggle raw display
Matrix group:$\left\langle \left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{array}\right), \left(\begin{array}{rrrr} -1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right) \right\rangle \subseteq \GL_{4}(\Z)$
$\left\langle \left(\begin{array}{rrr} 3 & 3 & 6 \\ 2 & 4 & 3 \\ 0 & 0 & 6 \end{array}\right), \left(\begin{array}{rrr} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right), \left(\begin{array}{rrr} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{array}\right), \left(\begin{array}{rrr} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 6 \end{array}\right), \left(\begin{array}{rrr} 3 & 2 & 6 \\ 2 & 4 & 3 \\ 0 & 0 & 6 \end{array}\right) \right\rangle \subseteq \GL_{3}(\F_{7})$
Transitive group: 24T38 more information
Direct product: $C_2$ $\, \times\, $ $C_3$ $\, \times\, $ $D_4$
Semidirect product: $C_2^3$ $\,\rtimes\,$ $C_6$ (2) $C_{12}$ $\,\rtimes\,$ $C_2^2$ (2) $(C_2\times C_4)$ $\,\rtimes\,$ $C_6$ $C_4$ $\,\rtimes\,$ $(C_2\times C_6)$ (2) all 8
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_6$ . $C_2^3$ $(C_2\times C_6)$ . $C_2^2$ $C_2^2$ . $(C_2\times C_6)$ $C_2$ . $(C_2^2\times C_6)$ more information
Aut. group: $\Aut(C_2\times C_{28})$ $\Aut(C_7\times D_4)$ $\Aut(C_2\times C_{36})$ $\Aut(D_4\times C_9)$

Elements of the group are displayed as words in the generators from the presentation given above.

Homology

Abelianization: $C_{2}^{2} \times C_{6} \simeq C_{2}^{3} \times C_{3}$
Schur multiplier: $C_{2}^{3}$
Commutator length: $1$

Subgroups

There are 70 subgroups in 54 conjugacy classes, 38 normal (10 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2\times C_6$ $G/Z \simeq$ $C_2^2$
Commutator: $G' \simeq$ $C_2$ $G/G' \simeq$ $C_2^2\times C_6$
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $C_2^2\times C_6$
Fitting: $\operatorname{Fit} \simeq$ $C_6\times D_4$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_6\times D_4$ $G/R \simeq$ $C_1$
Socle: $\operatorname{soc} \simeq$ $C_2\times C_6$ $G/\operatorname{soc} \simeq$ $C_2^2$
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\times D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $C_6\times D_4$ $\rhd$ $C_2$ $\rhd$ $C_1$
Chief series $C_6\times D_4$ $\rhd$ $C_2^2\times C_6$ $\rhd$ $C_2\times C_6$ $\rhd$ $C_6$ $\rhd$ $C_3$ $\rhd$ $C_1$
Lower central series $C_6\times D_4$ $\rhd$ $C_2$ $\rhd$ $C_1$
Upper central series $C_1$ $\lhd$ $C_2\times C_6$ $\lhd$ $C_6\times D_4$

Supergroups

This group is a maximal subgroup of 111 larger groups in the database.

This group is a maximal quotient of 107 larger groups in the database.

Character theory

Complex character table

See the $30 \times 30$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $20 \times 20$ rational character table.