Properties

Label 64.202
Order \( 2^{6} \)
Exponent \( 2^{2} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 2^{3} \)
$\card{\mathrm{Aut}(G)}$ \( 2^{12} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{9} \cdot 3 \)
Perm deg. $10$
Trans deg. $16$
Rank $4$

Related objects

Downloads

Learn more

Group information

Description:$C_2^3:D_4$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism group:$C_2^8.(C_2\times S_4)$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
Outer automorphisms:$C_2^6:S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Composition factors:$C_2$ x 6
Nilpotency class:$2$
Derived length:$2$

This group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Group statistics

Order 1 2 4
Elements 1 39 24 64
Conjugacy classes   1 21 6 28
Divisions 1 21 6 28
Autjugacy classes 1 4 1 6

Dimension 1 2
Irr. complex chars.   16 12 28
Irr. rational chars. 16 12 28

Minimal Presentations

Permutation degree:$10$
Transitive degree:$16$
Rank: $4$
Inequivalent generating quadruples: $420$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none none none
Arbitrary not computed not computed not computed

Constructions

Presentation: $\langle a, b, c, d, e \mid a^{2}=b^{2}=c^{2}=d^{2}=e^{4}=[a,b]=[a,c]=[a,d]=[b,c]=[b,d]=[c,d]=[c,e]=[d,e]=1, e^{a}=de, e^{b}=e^{3} \rangle$ Copy content Toggle raw display
Permutation group:Degree $10$ $\langle(1,2)(3,4)(8,10), (1,3)(7,8)(9,10), (2,4)(5,6), (1,3)(2,4)(5,6), (1,3)(2,4)(7,9)(8,10), (1,3)(2,4)\rangle$ Copy content Toggle raw display
Matrix group:$\left\langle \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right) \right\rangle \subseteq \GL_{5}(\Z)$
$\left\langle \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrrr} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{array}\right) \right\rangle \subseteq \GL_{5}(\F_{2})$
$\left\langle \left(\begin{array}{rr} 3 & 0 \\ 2 & 1 \end{array}\right), \left(\begin{array}{rr} 5 & 0 \\ 0 & 5 \end{array}\right), \left(\begin{array}{rr} 3 & 1 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right), \left(\begin{array}{rr} 7 & 5 \\ 2 & 1 \end{array}\right) \right\rangle \subseteq \GL_{2}(\Z/8\Z)$
Transitive group: 16T105 32T109 32T275 more information
Direct product: $C_2$ $\, \times\, $ $(C_2^2\wr C_2)$
Semidirect product: $C_2^3$ $\,\rtimes\,$ $D_4$ $C_2^5$ $\,\rtimes\,$ $C_2$ $C_2^4$ $\,\rtimes\,$ $C_2^2$ (2) $C_2^3$ $\,\rtimes\,$ $C_2^3$ all 11
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_2^4$ . $C_2^2$ $C_2^3$ . $C_2^3$ (2) $C_2^2$ . $C_2^4$ $C_2^2$ . $(C_2\times D_4)$ all 5
Aut. group: $\Aut(C_2^2:C_8)$ $\Aut(C_4:C_8)$ $\Aut(C_2^2:C_{12})$ $\Aut(C_4:C_{12})$

Elements of the group are displayed as matrices in $\GL_{2}(\Z/{8}\Z)$.

Homology

Abelianization: $C_{2}^{4} $
Schur multiplier: $C_{2}^{7}$
Commutator length: $1$

Subgroups

There are 569 subgroups in 331 conjugacy classes, 105 normal (6 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2^3$ $G/Z \simeq$ $C_2^3$
Commutator: $G' \simeq$ $C_2^2$ $G/G' \simeq$ $C_2^4$
Frattini: $\Phi \simeq$ $C_2^2$ $G/\Phi \simeq$ $C_2^4$
Fitting: $\operatorname{Fit} \simeq$ $C_2^3:D_4$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_2^3:D_4$ $G/R \simeq$ $C_1$
Socle: $\operatorname{soc} \simeq$ $C_2^3$ $G/\operatorname{soc} \simeq$ $C_2^3$
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^3:D_4$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $C_2^3:D_4$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Chief series $C_2^3:D_4$ $\rhd$ $C_2^2\times D_4$ $\rhd$ $C_2^2\times C_4$ $\rhd$ $C_2\times C_4$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Lower central series $C_2^3:D_4$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Upper central series $C_1$ $\lhd$ $C_2^3$ $\lhd$ $C_2^3:D_4$

Supergroups

This group is a maximal subgroup of 105 larger groups in the database.

This group is a maximal quotient of 141 larger groups in the database.

Character theory

Complex character table

Every character has rational values, so the complex character table is the same as the rational character table below.

Rational character table

See the $28 \times 28$ rational character table. Alternatively, you may search for characters of this group with desired properties.