Properties

Label 72.23
Order \( 2^{3} \cdot 3^{2} \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 2 \)
$\card{\mathrm{Aut}(G)}$ \( 2^{4} \cdot 3^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $10$
Trans deg. $12$
Rank $2$

Related objects

Downloads

Learn more

Group information

Description:$C_3:D_{12}$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism group:$D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) (generators)
Outer automorphisms:$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Composition factors:$C_2$ x 3, $C_3$ x 2
Derived length:$2$

This group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Group statistics

Order 1 2 3 4 6 12
Elements 1 25 8 6 20 12 72
Conjugacy classes   1 3 3 1 5 2 15
Divisions 1 3 3 1 4 1 13
Autjugacy classes 1 3 3 1 4 1 13

Dimension 1 2 4
Irr. complex chars.   4 9 2 15
Irr. rational chars. 4 5 4 13

Minimal Presentations

Permutation degree:$10$
Transitive degree:$12$
Rank: $2$
Inequivalent generating pairs: $6$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 4 4 4
Arbitrary 4 4 4

Constructions

Presentation: $\langle a, b, c \mid a^{2}=b^{12}=c^{3}=[a,c]=1, b^{a}=b^{11}, c^{b}=c^{2} \rangle$ Copy content Toggle raw display
Permutation group:Degree $10$ $\langle(1,2)(3,4)(9,10), (1,3,4,2)(6,7), (1,4)(2,3), (5,6,7), (8,9,10)\rangle$ Copy content Toggle raw display
Matrix group:$\left\langle \left(\begin{array}{rrrr} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \end{array}\right) \right\rangle \subseteq \GL_{4}(\Z)$
$\left\langle \left(\begin{array}{rrrr} 0 & 0 & 2 & 2 \\ 2 & 0 & 1 & 2 \\ 0 & 1 & 2 & 1 \\ 1 & 2 & 2 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 2 & 0 & 0 & 2 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 2 \\ 0 & 0 & 2 & 0 \\ 2 & 0 & 0 & 2 \end{array}\right), \left(\begin{array}{rrrr} 0 & 1 & 1 & 2 \\ 2 & 2 & 1 & 2 \\ 1 & 2 & 0 & 1 \\ 1 & 2 & 2 & 2 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right) \right\rangle \subseteq \GL_{4}(\F_{3})$
Transitive group: 12T38 24T74 36T33 36T38 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $D_6$ $\,\rtimes\,$ $S_3$ $C_3$ $\,\rtimes\,$ $D_{12}$ $C_3^2$ $\,\rtimes\,$ $D_4$ $(C_6\times S_3)$ $\,\rtimes\,$ $C_2$ all 8
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_6$ . $D_6$ (2) $C_2$ . $S_3^2$ $(C_3\times C_6)$ . $C_2^2$ more information

Elements of the group are displayed as words in the generators from the presentation given above.

Homology

Abelianization: $C_{2}^{2} $
Schur multiplier: $C_{2}$
Commutator length: $1$

Subgroups

There are 126 subgroups in 37 conjugacy classes, 14 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $S_3^2$
Commutator: $G' \simeq$ $C_3\times C_6$ $G/G' \simeq$ $C_2^2$
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $S_3^2$
Fitting: $\operatorname{Fit} \simeq$ $C_3\times C_6$ $G/\operatorname{Fit} \simeq$ $C_2^2$
Radical: $R \simeq$ $C_3:D_{12}$ $G/R \simeq$ $C_1$
Socle: $\operatorname{soc} \simeq$ $C_3\times C_6$ $G/\operatorname{soc} \simeq$ $C_2^2$
2-Sylow subgroup: $P_{ 2 } \simeq$ $D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $C_3:D_{12}$ $\rhd$ $C_3\times C_6$ $\rhd$ $C_1$
Chief series $C_3:D_{12}$ $\rhd$ $C_6\times S_3$ $\rhd$ $C_3\times C_6$ $\rhd$ $C_3^2$ $\rhd$ $C_3$ $\rhd$ $C_1$
Lower central series $C_3:D_{12}$ $\rhd$ $C_3\times C_6$ $\rhd$ $C_3^2$
Upper central series $C_1$ $\lhd$ $C_2$

Supergroups

This group is a maximal subgroup of 64 larger groups in the database.

This group is a maximal quotient of 66 larger groups in the database.

Character theory

Complex character table

1A 2A 2B 2C 3A 3B 3C 4A 6A 6B 6C 6D1 6D-1 12A1 12A5
Size 1 1 6 18 2 2 4 6 2 2 4 6 6 6 6
2 P 1A 1A 1A 1A 3A 3B 3C 2A 3B 3A 3C 3A 3A 6A 6A
3 P 1A 2A 2B 2C 1A 1A 1A 4A 2A 2A 2A 2B 2B 4A 4A
Type
72.23.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
72.23.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
72.23.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
72.23.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
72.23.2a R 2 2 0 0 2 1 1 2 1 2 1 0 0 1 1
72.23.2b R 2 2 2 0 1 2 1 0 2 1 1 1 1 0 0
72.23.2c R 2 2 0 0 2 2 2 0 2 2 2 0 0 0 0
72.23.2d R 2 2 2 0 1 2 1 0 2 1 1 1 1 0 0
72.23.2e R 2 2 0 0 2 1 1 2 1 2 1 0 0 1 1
72.23.2f1 R 2 2 0 0 2 1 1 0 1 2 1 0 0 ζ121ζ12 ζ121+ζ12
72.23.2f2 R 2 2 0 0 2 1 1 0 1 2 1 0 0 ζ121+ζ12 ζ121ζ12
72.23.2g1 C 2 2 0 0 1 2 1 0 2 1 1 12ζ3 1+2ζ3 0 0
72.23.2g2 C 2 2 0 0 1 2 1 0 2 1 1 1+2ζ3 12ζ3 0 0
72.23.4a R 4 4 0 0 2 2 1 0 2 2 1 0 0 0 0
72.23.4b R 4 4 0 0 2 2 1 0 2 2 1 0 0 0 0

Rational character table

1A 2A 2B 2C 3A 3B 3C 4A 6A 6B 6C 6D 12A
Size 1 1 6 18 2 2 4 6 2 2 4 12 12
2 P 1A 1A 1A 1A 3A 3B 3C 2A 3B 3A 3C 3A 6A
3 P 1A 2A 2B 2C 1A 1A 1A 4A 2A 2A 2A 2B 4A
72.23.1a 1 1 1 1 1 1 1 1 1 1 1 1 1
72.23.1b 1 1 1 1 1 1 1 1 1 1 1 1 1
72.23.1c 1 1 1 1 1 1 1 1 1 1 1 1 1
72.23.1d 1 1 1 1 1 1 1 1 1 1 1 1 1
72.23.2a 2 2 0 0 2 1 1 2 1 2 1 0 1
72.23.2b 2 2 2 0 1 2 1 0 2 1 1 1 0
72.23.2c 2 2 0 0 2 2 2 0 2 2 2 0 0
72.23.2d 2 2 2 0 1 2 1 0 2 1 1 1 0
72.23.2e 2 2 0 0 2 1 1 2 1 2 1 0 1
72.23.2f 4 4 0 0 4 2 2 0 2 4 2 0 0
72.23.2g 4 4 0 0 2 4 2 0 4 2 2 0 0
72.23.4a 4 4 0 0 2 2 1 0 2 2 1 0 0
72.23.4b 4 4 0 0 2 2 1 0 2 2 1 0 0