Properties

Label 12.72.4.t.1
Level $12$
Index $72$
Genus $4$
Analytic rank $0$
Cusps $6$
$\Q$-cusps $0$

Related objects

Downloads

Learn more

Invariants

Level: $12$ $\SL_2$-level: $12$ Newform level: $144$
Index: $72$ $\PSL_2$-index:$72$
Genus: $4 = 1 + \frac{ 72 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 6 }{2}$
Cusps: $6$ (none of which are rational) Cusp widths $12^{6}$ Cusp orbits $2^{3}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
Analytic rank: $0$
$\Q$-gonality: $3 \le \gamma \le 4$
$\overline{\Q}$-gonality: $3 \le \gamma \le 4$
Rational cusps: $0$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 12B4
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 12.72.4.29

Level structure

$\GL_2(\Z/12\Z)$-generators: $\begin{bmatrix}5&5\\10&5\end{bmatrix}$, $\begin{bmatrix}9&2\\10&3\end{bmatrix}$, $\begin{bmatrix}11&8\\2&7\end{bmatrix}$
$\GL_2(\Z/12\Z)$-subgroup: $Q_8:D_4$
Contains $-I$: yes
Quadratic refinements: none in database
Cyclic 12-isogeny field degree: $8$
Cyclic 12-torsion field degree: $32$
Full 12-torsion field degree: $64$

Jacobian

Conductor: $2^{12}\cdot3^{6}$
Simple: no
Squarefree: yes
Decomposition: $1^{4}$
Newforms: 24.2.a.a, 36.2.a.a, 48.2.a.a, 72.2.a.a

Models

Canonical model in $\mathbb{P}^{ 3 }$

$ 0 $ $=$ $ 3 x^{2} + 2 z^{2} + 2 z w - w^{2} $
$=$ $ - x z^{2} - x z w - x w^{2} + 4 y^{3} + 2 y z^{2} - 2 y w^{2}$
Copy content Toggle raw display

Singular plane model Singular plane model

$ 0 $ $=$ $ - x^{6} + 6 x^{5} y - 9 x^{4} y^{2} + 2 x^{4} z^{2} - 18 x^{3} y^{3} - 6 x^{3} y z^{2} + \cdots + 3 y^{2} z^{4} $
Copy content Toggle raw display

Rational points

This modular curve has real points and $\Q_p$ points for $p$ not dividing the level, but no known rational points.

Maps between models of this curve

Birational map from canonical model to plane model:

$\displaystyle X$ $=$ $\displaystyle x$
$\displaystyle Y$ $=$ $\displaystyle \frac{2}{3}y$
$\displaystyle Z$ $=$ $\displaystyle w$

Maps to other modular curves

$j$-invariant map of degree 72 from the canonical model of this modular curve to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle -2^8\cdot3^4\,\frac{z^{3}(z+2w)^{3}(12xyz^{4}+12xyz^{3}w-12xyzw^{3}-12xyw^{4}-12y^{2}z^{4}+24y^{2}z^{2}w^{2}-12y^{2}w^{4}+5z^{6}+24z^{5}w+45z^{4}w^{2}+32z^{3}w^{3}+3z^{2}w^{4}-w^{6})}{228xyz^{10}+372xyz^{9}w-180xyz^{8}w^{2}-360xyz^{7}w^{3}+432xyz^{6}w^{4}+792xyz^{5}w^{5}-72xyz^{4}w^{6}-1008xyz^{3}w^{7}-612xyz^{2}w^{8}+204xyzw^{9}+204xyw^{10}-216y^{2}z^{10}-432y^{2}z^{9}w+288y^{2}z^{7}w^{3}+216y^{2}z^{6}w^{4}+720y^{2}z^{5}w^{5}+576y^{2}z^{4}w^{6}-576y^{2}z^{3}w^{7}-720y^{2}z^{2}w^{8}+144y^{2}w^{10}+52z^{12}+168z^{11}w+144z^{10}w^{2}-100z^{9}w^{3}-243z^{8}w^{4}+36z^{7}w^{5}+474z^{6}w^{6}+468z^{5}w^{7}+63z^{4}w^{8}-208z^{3}w^{9}-150z^{2}w^{10}+25w^{12}}$

Modular covers

Sorry, your browser does not support the nearby lattice.

Cover information

Click on a modular curve in the diagram to see information about it.

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank Kernel decomposition
12.36.2.bn.1 $12$ $2$ $2$ $2$ $0$ $1^{2}$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus Rank Kernel decomposition
12.144.7.bm.1 $12$ $2$ $2$ $7$ $0$ $1^{3}$
12.144.7.bo.1 $12$ $2$ $2$ $7$ $0$ $1^{3}$
12.144.7.cg.1 $12$ $2$ $2$ $7$ $0$ $1^{3}$
12.144.7.cl.1 $12$ $2$ $2$ $7$ $0$ $1^{3}$
24.144.7.vy.1 $24$ $2$ $2$ $7$ $2$ $1^{3}$
24.144.7.wl.1 $24$ $2$ $2$ $7$ $0$ $1^{3}$
24.144.7.bli.1 $24$ $2$ $2$ $7$ $0$ $1^{3}$
24.144.7.bmp.1 $24$ $2$ $2$ $7$ $2$ $1^{3}$
36.216.16.w.1 $36$ $3$ $3$ $16$ $4$ $1^{6}\cdot2^{3}$
36.648.46.be.1 $36$ $9$ $9$ $46$ $17$ $1^{24}\cdot2^{9}$
60.144.7.iw.1 $60$ $2$ $2$ $7$ $1$ $1^{3}$
60.144.7.iy.1 $60$ $2$ $2$ $7$ $1$ $1^{3}$
60.144.7.kn.1 $60$ $2$ $2$ $7$ $1$ $1^{3}$
60.144.7.kp.1 $60$ $2$ $2$ $7$ $1$ $1^{3}$
60.360.28.ct.1 $60$ $5$ $5$ $28$ $10$ $1^{24}$
60.432.31.gp.1 $60$ $6$ $6$ $31$ $3$ $1^{27}$
60.720.55.xj.1 $60$ $10$ $10$ $55$ $22$ $1^{51}$
84.144.7.gk.1 $84$ $2$ $2$ $7$ $?$ not computed
84.144.7.gm.1 $84$ $2$ $2$ $7$ $?$ not computed
84.144.7.hm.1 $84$ $2$ $2$ $7$ $?$ not computed
84.144.7.ho.1 $84$ $2$ $2$ $7$ $?$ not computed
120.144.7.ggm.1 $120$ $2$ $2$ $7$ $?$ not computed
120.144.7.ggs.1 $120$ $2$ $2$ $7$ $?$ not computed
120.144.7.gwg.1 $120$ $2$ $2$ $7$ $?$ not computed
120.144.7.gwm.1 $120$ $2$ $2$ $7$ $?$ not computed
132.144.7.fy.1 $132$ $2$ $2$ $7$ $?$ not computed
132.144.7.ga.1 $132$ $2$ $2$ $7$ $?$ not computed
132.144.7.ha.1 $132$ $2$ $2$ $7$ $?$ not computed
132.144.7.hc.1 $132$ $2$ $2$ $7$ $?$ not computed
156.144.7.hw.1 $156$ $2$ $2$ $7$ $?$ not computed
156.144.7.hy.1 $156$ $2$ $2$ $7$ $?$ not computed
156.144.7.iy.1 $156$ $2$ $2$ $7$ $?$ not computed
156.144.7.ja.1 $156$ $2$ $2$ $7$ $?$ not computed
168.144.7.fiv.1 $168$ $2$ $2$ $7$ $?$ not computed
168.144.7.fjb.1 $168$ $2$ $2$ $7$ $?$ not computed
168.144.7.fvf.1 $168$ $2$ $2$ $7$ $?$ not computed
168.144.7.fvl.1 $168$ $2$ $2$ $7$ $?$ not computed
204.144.7.hk.1 $204$ $2$ $2$ $7$ $?$ not computed
204.144.7.hm.1 $204$ $2$ $2$ $7$ $?$ not computed
204.144.7.im.1 $204$ $2$ $2$ $7$ $?$ not computed
204.144.7.io.1 $204$ $2$ $2$ $7$ $?$ not computed
228.144.7.gk.1 $228$ $2$ $2$ $7$ $?$ not computed
228.144.7.gm.1 $228$ $2$ $2$ $7$ $?$ not computed
228.144.7.hm.1 $228$ $2$ $2$ $7$ $?$ not computed
228.144.7.ho.1 $228$ $2$ $2$ $7$ $?$ not computed
264.144.7.fij.1 $264$ $2$ $2$ $7$ $?$ not computed
264.144.7.fip.1 $264$ $2$ $2$ $7$ $?$ not computed
264.144.7.fut.1 $264$ $2$ $2$ $7$ $?$ not computed
264.144.7.fuz.1 $264$ $2$ $2$ $7$ $?$ not computed
276.144.7.fy.1 $276$ $2$ $2$ $7$ $?$ not computed
276.144.7.ga.1 $276$ $2$ $2$ $7$ $?$ not computed
276.144.7.ha.1 $276$ $2$ $2$ $7$ $?$ not computed
276.144.7.hc.1 $276$ $2$ $2$ $7$ $?$ not computed
312.144.7.fsd.1 $312$ $2$ $2$ $7$ $?$ not computed
312.144.7.fsj.1 $312$ $2$ $2$ $7$ $?$ not computed
312.144.7.gen.1 $312$ $2$ $2$ $7$ $?$ not computed
312.144.7.get.1 $312$ $2$ $2$ $7$ $?$ not computed