Properties

Label 9.18.0.d.1
Level $9$
Index $18$
Genus $0$
Analytic rank $0$
Cusps $2$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $9$ $\SL_2$-level: $9$
Index: $18$ $\PSL_2$-index:$18$
Genus: $0 = 1 + \frac{ 18 }{12} - \frac{ 6 }{4} - \frac{ 0 }{3} - \frac{ 2 }{2}$
Cusps: $2$ (all of which are rational) Cusp widths $9^{2}$ Cusp orbits $1^{2}$
Elliptic points: $6$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $2$
Rational CM points: yes $\quad(D =$ $-8,-11$)

Other labels

Cummins and Pauli (CP) label: 9D0
Sutherland and Zywina (SZ) label: 9D0-9a
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 9.18.0.2

Level structure

$\GL_2(\Z/9\Z)$-generators: $\begin{bmatrix}3&7\\1&3\end{bmatrix}$, $\begin{bmatrix}8&0\\0&7\end{bmatrix}$
$\GL_2(\Z/9\Z)$-subgroup: $C_3^3:D_4$
Contains $-I$: yes
Quadratic refinements: none in database
Cyclic 9-isogeny field degree: $6$
Cyclic 9-torsion field degree: $36$
Full 9-torsion field degree: $216$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 4 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 18 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{x^{18}(x^{3}-9y^{3})^{3}(x^{3}+3y^{3})^{3}}{y^{9}x^{27}}$

Modular covers

Sorry, your browser does not support the nearby lattice.

Cover information

Click on a modular curve in the diagram to see information about it.

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
$X_{\mathrm{sp}}^+(3)$ $3$ $3$ $3$ $0$ $0$
9.9.0.a.1 $9$ $2$ $2$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
9.36.2.a.1 $9$ $2$ $2$ $2$
$X_{\mathrm{sp}}^+(9)$ $9$ $3$ $3$ $1$
18.36.0.b.1 $18$ $2$ $2$ $0$
18.36.3.e.1 $18$ $2$ $2$ $3$
18.36.3.i.1 $18$ $2$ $2$ $3$
18.54.2.e.1 $18$ $3$ $3$ $2$
36.36.0.c.1 $36$ $2$ $2$ $0$
36.36.2.b.1 $36$ $2$ $2$ $2$
36.36.3.h.1 $36$ $2$ $2$ $3$
36.36.3.p.1 $36$ $2$ $2$ $3$
36.72.3.bc.1 $36$ $4$ $4$ $3$
45.36.2.a.1 $45$ $2$ $2$ $2$
45.90.6.g.1 $45$ $5$ $5$ $6$
45.108.5.f.1 $45$ $6$ $6$ $5$
45.180.11.h.1 $45$ $10$ $10$ $11$
63.36.2.a.1 $63$ $2$ $2$ $2$
63.144.11.m.1 $63$ $8$ $8$ $11$
63.378.22.h.1 $63$ $21$ $21$ $22$
63.504.33.i.1 $63$ $28$ $28$ $33$
72.36.0.e.1 $72$ $2$ $2$ $0$
72.36.0.f.1 $72$ $2$ $2$ $0$
72.36.2.c.1 $72$ $2$ $2$ $2$
72.36.2.d.1 $72$ $2$ $2$ $2$
72.36.3.v.1 $72$ $2$ $2$ $3$
72.36.3.bb.1 $72$ $2$ $2$ $3$
72.36.3.bx.1 $72$ $2$ $2$ $3$
72.36.3.cd.1 $72$ $2$ $2$ $3$
90.36.0.a.1 $90$ $2$ $2$ $0$
90.36.3.o.1 $90$ $2$ $2$ $3$
90.36.3.p.1 $90$ $2$ $2$ $3$
99.36.2.a.1 $99$ $2$ $2$ $2$
99.216.17.e.1 $99$ $12$ $12$ $17$
117.36.2.a.1 $117$ $2$ $2$ $2$
117.252.17.n.1 $117$ $14$ $14$ $17$
126.36.0.a.1 $126$ $2$ $2$ $0$
126.36.3.bd.1 $126$ $2$ $2$ $3$
126.36.3.be.1 $126$ $2$ $2$ $3$
153.36.2.a.1 $153$ $2$ $2$ $2$
153.324.23.h.1 $153$ $18$ $18$ $23$
171.36.2.a.1 $171$ $2$ $2$ $2$
180.36.0.c.1 $180$ $2$ $2$ $0$
180.36.2.c.1 $180$ $2$ $2$ $2$
180.36.3.bk.1 $180$ $2$ $2$ $3$
180.36.3.bn.1 $180$ $2$ $2$ $3$
198.36.0.a.1 $198$ $2$ $2$ $0$
198.36.3.o.1 $198$ $2$ $2$ $3$
198.36.3.p.1 $198$ $2$ $2$ $3$
207.36.2.a.1 $207$ $2$ $2$ $2$
234.36.0.a.1 $234$ $2$ $2$ $0$
234.36.3.bd.1 $234$ $2$ $2$ $3$
234.36.3.be.1 $234$ $2$ $2$ $3$
252.36.0.c.1 $252$ $2$ $2$ $0$
252.36.2.c.1 $252$ $2$ $2$ $2$
252.36.3.bw.1 $252$ $2$ $2$ $3$
252.36.3.bz.1 $252$ $2$ $2$ $3$
261.36.2.a.1 $261$ $2$ $2$ $2$
279.36.2.a.1 $279$ $2$ $2$ $2$
306.36.0.a.1 $306$ $2$ $2$ $0$
306.36.3.o.1 $306$ $2$ $2$ $3$
306.36.3.p.1 $306$ $2$ $2$ $3$
315.36.2.a.1 $315$ $2$ $2$ $2$
333.36.2.a.1 $333$ $2$ $2$ $2$