Properties

Label 1.105.6t1.a.b
Dimension 11
Group C6C_6
Conductor 105105
Root number not computed
Indicator 00

Related objects

Downloads

Learn more

Basic invariants

Dimension: 11
Group: C6C_6
Conductor: 105105=357\medspace = 3 \cdot 5 \cdot 7
Artin field: Galois closure of 6.0.8103375.1
Galois orbit size: 22
Smallest permutation container: C6C_6
Parity: odd
Dirichlet character: χ105(44,)\chi_{105}(44,\cdot)
Projective image: C1C_1
Projective field: Galois closure of Q\Q

Defining polynomial

f(x)f(x)== x6x5+7x45x3+49x29x+139 x^{6} - x^{5} + 7x^{4} - 5x^{3} + 49x^{2} - 9x + 139 Copy content Toggle raw display .

The roots of ff are computed in an extension of Q13\Q_{ 13 } to precision 5.

Minimal polynomial of a generator aa of KK over Q13\mathbb{Q}_{ 13 }: x2+12x+2 x^{2} + 12x + 2 Copy content Toggle raw display

Roots:
r1r_{ 1 } == 2a+(2a+6)13+(10a+11)132+9a133+(11a+10)134+O(135) 2 a + \left(2 a + 6\right)\cdot 13 + \left(10 a + 11\right)\cdot 13^{2} + 9 a\cdot 13^{3} + \left(11 a + 10\right)\cdot 13^{4} +O(13^{5}) Copy content Toggle raw display
r2r_{ 2 } == 11a+2+(10a+6)13+(2a+6)132+3a133+(a+12)134+O(135) 11 a + 2 + \left(10 a + 6\right)\cdot 13 + \left(2 a + 6\right)\cdot 13^{2} + 3 a\cdot 13^{3} + \left(a + 12\right)\cdot 13^{4} +O(13^{5}) Copy content Toggle raw display
r3r_{ 3 } == 2a+3+(2a+4)13+(10a+10)132+(9a+7)133+11a134+O(135) 2 a + 3 + \left(2 a + 4\right)\cdot 13 + \left(10 a + 10\right)\cdot 13^{2} + \left(9 a + 7\right)\cdot 13^{3} + 11 a\cdot 13^{4} +O(13^{5}) Copy content Toggle raw display
r4r_{ 4 } == 11a+5+(10a+4)13+(2a+5)132+(3a+7)133+(a+2)134+O(135) 11 a + 5 + \left(10 a + 4\right)\cdot 13 + \left(2 a + 5\right)\cdot 13^{2} + \left(3 a + 7\right)\cdot 13^{3} + \left(a + 2\right)\cdot 13^{4} +O(13^{5}) Copy content Toggle raw display
r5r_{ 5 } == 2a+1+(2a+9)13+(10a+11)132+(9a+4)133+(11a+12)134+O(135) 2 a + 1 + \left(2 a + 9\right)\cdot 13 + \left(10 a + 11\right)\cdot 13^{2} + \left(9 a + 4\right)\cdot 13^{3} + \left(11 a + 12\right)\cdot 13^{4} +O(13^{5}) Copy content Toggle raw display
r6r_{ 6 } == 11a+3+(10a+9)13+(2a+6)132+(3a+4)133+(a+1)134+O(135) 11 a + 3 + \left(10 a + 9\right)\cdot 13 + \left(2 a + 6\right)\cdot 13^{2} + \left(3 a + 4\right)\cdot 13^{3} + \left(a + 1\right)\cdot 13^{4} +O(13^{5}) Copy content Toggle raw display

Generators of the action on the roots r1,,r6r_1, \ldots, r_{ 6 }

Cycle notation
(1,2)(3,4)(5,6)(1,2)(3,4)(5,6)
(1,5,3)(2,6,4)(1,5,3)(2,6,4)

Character values on conjugacy classes

SizeOrderAction on r1,,r6r_1, \ldots, r_{ 6 } Character valueComplex conjugation
1111()()11
1122(1,2)(3,4)(5,6)(1,2)(3,4)(5,6)1-1
1133(1,5,3)(2,6,4)(1,5,3)(2,6,4)ζ31-\zeta_{3} - 1
1133(1,3,5)(2,4,6)(1,3,5)(2,4,6)ζ3\zeta_{3}
1166(1,6,3,2,5,4)(1,6,3,2,5,4)ζ3+1\zeta_{3} + 1
1166(1,4,5,2,3,6)(1,4,5,2,3,6)ζ3-\zeta_{3}