Properties

Label 18.114...592.36t1758.a.a
Dimension 1818
Group S4C2S_4\wr C_2
Conductor 1.147×10311.147\times 10^{31}
Root number 11
Indicator 11

Related objects

Downloads

Learn more

Basic invariants

Dimension: 1818
Group: S4C2S_4\wr C_2
Conductor: 114 ⁣ ⁣592114\!\cdots\!592=21231479299\medspace = 2^{12} \cdot 3^{14} \cdot 7^{9} \cdot 29^{9}
Frobenius-Schur indicator: 11
Root number: 11
Artin stem field: Galois closure of 8.2.57748079088.1
Galois orbit size: 11
Smallest permutation container: 36T1758
Parity: odd
Determinant: 1.203.2t1.a.a
Projective image: S4C2S_4\wr C_2
Projective stem field: Galois closure of 8.2.57748079088.1

Defining polynomial

f(x)f(x)== x8x7+5x64x5+10x4+10x34x2+4x+4 x^{8} - x^{7} + 5x^{6} - 4x^{5} + 10x^{4} + 10x^{3} - 4x^{2} + 4x + 4 Copy content Toggle raw display .

The roots of ff are computed in an extension of Q59\Q_{ 59 } to precision 10.

Minimal polynomial of a generator aa of KK over Q59\mathbb{Q}_{ 59 }: x2+58x+2 x^{2} + 58x + 2 Copy content Toggle raw display

Roots:
r1r_{ 1 } == 57a+55+(15a+49)59+(26a+14)592+(4a+56)593+(8a+43)594+(13a+35)595+(26a+10)596+(49a+46)597+(a+39)598+(22a+50)599+O(5910) 57 a + 55 + \left(15 a + 49\right)\cdot 59 + \left(26 a + 14\right)\cdot 59^{2} + \left(4 a + 56\right)\cdot 59^{3} + \left(8 a + 43\right)\cdot 59^{4} + \left(13 a + 35\right)\cdot 59^{5} + \left(26 a + 10\right)\cdot 59^{6} + \left(49 a + 46\right)\cdot 59^{7} + \left(a + 39\right)\cdot 59^{8} + \left(22 a + 50\right)\cdot 59^{9} +O(59^{10}) Copy content Toggle raw display
r2r_{ 2 } == 2a+53+(43a+8)59+(32a+25)592+(54a+34)593+(50a+47)594+(45a+40)595+(32a+23)596+(9a+10)597+(57a+51)598+(36a+11)599+O(5910) 2 a + 53 + \left(43 a + 8\right)\cdot 59 + \left(32 a + 25\right)\cdot 59^{2} + \left(54 a + 34\right)\cdot 59^{3} + \left(50 a + 47\right)\cdot 59^{4} + \left(45 a + 40\right)\cdot 59^{5} + \left(32 a + 23\right)\cdot 59^{6} + \left(9 a + 10\right)\cdot 59^{7} + \left(57 a + 51\right)\cdot 59^{8} + \left(36 a + 11\right)\cdot 59^{9} +O(59^{10}) Copy content Toggle raw display
r3r_{ 3 } == 5a+13+(46a+1)59+(33a+1)592+(25a+33)593+(37a+53)594+(25a+44)595+(54a+40)596+(45a+13)597+(8a+50)598+(36a+17)599+O(5910) 5 a + 13 + \left(46 a + 1\right)\cdot 59 + \left(33 a + 1\right)\cdot 59^{2} + \left(25 a + 33\right)\cdot 59^{3} + \left(37 a + 53\right)\cdot 59^{4} + \left(25 a + 44\right)\cdot 59^{5} + \left(54 a + 40\right)\cdot 59^{6} + \left(45 a + 13\right)\cdot 59^{7} + \left(8 a + 50\right)\cdot 59^{8} + \left(36 a + 17\right)\cdot 59^{9} +O(59^{10}) Copy content Toggle raw display
r4r_{ 4 } == 31a+20+(2a+13)59+(52a+15)592+(11a+29)593+(50a+2)594+(17a+57)595+21a596+(24a+3)597+(13a+6)598+(47a+49)599+O(5910) 31 a + 20 + \left(2 a + 13\right)\cdot 59 + \left(52 a + 15\right)\cdot 59^{2} + \left(11 a + 29\right)\cdot 59^{3} + \left(50 a + 2\right)\cdot 59^{4} + \left(17 a + 57\right)\cdot 59^{5} + 21 a\cdot 59^{6} + \left(24 a + 3\right)\cdot 59^{7} + \left(13 a + 6\right)\cdot 59^{8} + \left(47 a + 49\right)\cdot 59^{9} +O(59^{10}) Copy content Toggle raw display
r5r_{ 5 } == 28a+51+(56a+43)59+(6a+5)592+(47a+48)593+(8a+40)594+(41a+24)595+(37a+4)596+(34a+6)597+(45a+54)598+(11a+23)599+O(5910) 28 a + 51 + \left(56 a + 43\right)\cdot 59 + \left(6 a + 5\right)\cdot 59^{2} + \left(47 a + 48\right)\cdot 59^{3} + \left(8 a + 40\right)\cdot 59^{4} + \left(41 a + 24\right)\cdot 59^{5} + \left(37 a + 4\right)\cdot 59^{6} + \left(34 a + 6\right)\cdot 59^{7} + \left(45 a + 54\right)\cdot 59^{8} + \left(11 a + 23\right)\cdot 59^{9} +O(59^{10}) Copy content Toggle raw display
r6r_{ 6 } == 9+4559+34592+37593+29594+20595+19596+2597+49598+57599+O(5910) 9 + 45\cdot 59 + 34\cdot 59^{2} + 37\cdot 59^{3} + 29\cdot 59^{4} + 20\cdot 59^{5} + 19\cdot 59^{6} + 2\cdot 59^{7} + 49\cdot 59^{8} + 57\cdot 59^{9} +O(59^{10}) Copy content Toggle raw display
r7r_{ 7 } == 18+3159+32592+31593+11594+38595+7596+31597+31598+38599+O(5910) 18 + 31\cdot 59 + 32\cdot 59^{2} + 31\cdot 59^{3} + 11\cdot 59^{4} + 38\cdot 59^{5} + 7\cdot 59^{6} + 31\cdot 59^{7} + 31\cdot 59^{8} + 38\cdot 59^{9} +O(59^{10}) Copy content Toggle raw display
r8r_{ 8 } == 54a+18+(12a+42)59+(25a+47)592+(33a+24)593+(21a+6)594+(33a+33)595+(4a+10)596+(13a+5)597+(50a+13)598+(22a+45)599+O(5910) 54 a + 18 + \left(12 a + 42\right)\cdot 59 + \left(25 a + 47\right)\cdot 59^{2} + \left(33 a + 24\right)\cdot 59^{3} + \left(21 a + 6\right)\cdot 59^{4} + \left(33 a + 33\right)\cdot 59^{5} + \left(4 a + 10\right)\cdot 59^{6} + \left(13 a + 5\right)\cdot 59^{7} + \left(50 a + 13\right)\cdot 59^{8} + \left(22 a + 45\right)\cdot 59^{9} +O(59^{10}) Copy content Toggle raw display

Generators of the action on the roots r1,,r8r_1, \ldots, r_{ 8 }

Cycle notation
(1,2,3,8)(1,2,3,8)
(1,2)(1,2)
(1,4)(2,5)(3,6)(7,8)(1,4)(2,5)(3,6)(7,8)

Character values on conjugacy classes

SizeOrderAction on r1,,r8r_1, \ldots, r_{ 8 } Character valueComplex conjugation
1111()()1818
6622(4,6)(5,7)(4,6)(5,7)6-6
9922(1,3)(2,8)(4,6)(5,7)(1,3)(2,8)(4,6)(5,7)22
121222(1,2)(1,2)00
242422(1,4)(2,5)(3,6)(7,8)(1,4)(2,5)(3,6)(7,8)00
363622(1,2)(4,5)(1,2)(4,5)2-2
363622(1,2)(4,6)(5,7)(1,2)(4,6)(5,7)00
161633(1,3,8)(1,3,8)00
646433(1,3,8)(5,6,7)(1,3,8)(5,6,7)00
121244(4,5,6,7)(4,5,6,7)00
363644(1,2,3,8)(4,5,6,7)(1,2,3,8)(4,5,6,7)2-2
363644(1,2,3,8)(4,6)(5,7)(1,2,3,8)(4,6)(5,7)00
727244(1,4,3,6)(2,5,8,7)(1,4,3,6)(2,5,8,7)00
727244(1,2)(4,5,6,7)(1,2)(4,5,6,7)22
14414444(1,5,2,4)(3,6)(7,8)(1,5,2,4)(3,6)(7,8)00
484866(1,8,3)(4,6)(5,7)(1,8,3)(4,6)(5,7)00
969666(1,2)(5,7,6)(1,2)(5,7,6)00
19219266(1,5,3,6,8,7)(2,4)(1,5,3,6,8,7)(2,4)00
14414488(1,4,2,5,3,6,8,7)(1,4,2,5,3,6,8,7)00
96961212(1,3,8)(4,5,6,7)(1,3,8)(4,5,6,7)00