Properties

Label 2.112.8t17.a
Dimension 22
Group C4C2C_4\wr C_2
Conductor 112112
Indicator 00

Related objects

Downloads

Learn more

Basic invariants

Dimension:22
Group:C4C2C_4\wr C_2
Conductor:112112=247\medspace = 2^{4} \cdot 7
Artin number field: Galois closure of 8.0.4917248.1
Galois orbit size: 22
Smallest permutation container: C4C2C_4\wr C_2
Parity: odd
Projective image: D4D_4
Projective field: Galois closure of 4.2.14336.1

Galois action

Roots of defining polynomial

The roots of ff are computed in Q239\Q_{ 239 } to precision 5.
Roots:
r1r_{ 1 } == 30+93239+1552392+1522393+1542394+O(2395) 30 + 93\cdot 239 + 155\cdot 239^{2} + 152\cdot 239^{3} + 154\cdot 239^{4} +O(239^{5}) Copy content Toggle raw display
r2r_{ 2 } == 92+154239+262392+2332393+212394+O(2395) 92 + 154\cdot 239 + 26\cdot 239^{2} + 233\cdot 239^{3} + 21\cdot 239^{4} +O(239^{5}) Copy content Toggle raw display
r3r_{ 3 } == 122+203239+2112392+502393+1662394+O(2395) 122 + 203\cdot 239 + 211\cdot 239^{2} + 50\cdot 239^{3} + 166\cdot 239^{4} +O(239^{5}) Copy content Toggle raw display
r4r_{ 4 } == 126+68239+252392+862393+602394+O(2395) 126 + 68\cdot 239 + 25\cdot 239^{2} + 86\cdot 239^{3} + 60\cdot 239^{4} +O(239^{5}) Copy content Toggle raw display
r5r_{ 5 } == 187+73239+1782392+2322393+2082394+O(2395) 187 + 73\cdot 239 + 178\cdot 239^{2} + 232\cdot 239^{3} + 208\cdot 239^{4} +O(239^{5}) Copy content Toggle raw display
r6r_{ 6 } == 194+202239+872392+652393+692394+O(2395) 194 + 202\cdot 239 + 87\cdot 239^{2} + 65\cdot 239^{3} + 69\cdot 239^{4} +O(239^{5}) Copy content Toggle raw display
r7r_{ 7 } == 211+85239+2072392+1162393+1372394+O(2395) 211 + 85\cdot 239 + 207\cdot 239^{2} + 116\cdot 239^{3} + 137\cdot 239^{4} +O(239^{5}) Copy content Toggle raw display
r8r_{ 8 } == 236+73239+632392+182393+1372394+O(2395) 236 + 73\cdot 239 + 63\cdot 239^{2} + 18\cdot 239^{3} + 137\cdot 239^{4} +O(239^{5}) Copy content Toggle raw display

Generators of the action on the roots r1,,r8r_1, \ldots, r_{ 8 }

Cycle notation
(3,5)(4,7)(3,5)(4,7)
(1,6,8,2)(3,4,5,7)(1,6,8,2)(3,4,5,7)
(1,5,8,3)(2,4,6,7)(1,5,8,3)(2,4,6,7)
(3,7,5,4)(3,7,5,4)
(1,8)(2,6)(3,5)(4,7)(1,8)(2,6)(3,5)(4,7)

Character values on conjugacy classes

SizeOrderAction on r1,,r8r_1, \ldots, r_{ 8 } Character values
c1c1 c2c2
11 11 ()() 22 22
11 22 (1,8)(2,6)(3,5)(4,7)(1,8)(2,6)(3,5)(4,7) 2-2 2-2
22 22 (3,5)(4,7)(3,5)(4,7) 00 00
44 22 (1,7)(2,5)(3,6)(4,8)(1,7)(2,5)(3,6)(4,8) 00 00
11 44 (1,6,8,2)(3,4,5,7)(1,6,8,2)(3,4,5,7) 2ζ4-2 \zeta_{4} 2ζ42 \zeta_{4}
11 44 (1,2,8,6)(3,7,5,4)(1,2,8,6)(3,7,5,4) 2ζ42 \zeta_{4} 2ζ4-2 \zeta_{4}
22 44 (3,7,5,4)(3,7,5,4) ζ4+1\zeta_{4} + 1 ζ4+1-\zeta_{4} + 1
22 44 (3,4,5,7)(3,4,5,7) ζ4+1-\zeta_{4} + 1 ζ4+1\zeta_{4} + 1
22 44 (1,8)(2,6)(3,4,5,7)(1,8)(2,6)(3,4,5,7) ζ41-\zeta_{4} - 1 ζ41\zeta_{4} - 1
22 44 (1,8)(2,6)(3,7,5,4)(1,8)(2,6)(3,7,5,4) ζ41\zeta_{4} - 1 ζ41-\zeta_{4} - 1
22 44 (1,6,8,2)(3,7,5,4)(1,6,8,2)(3,7,5,4) 00 00
44 44 (1,5,8,3)(2,4,6,7)(1,5,8,3)(2,4,6,7) 00 00
44 88 (1,4,6,5,8,7,2,3)(1,4,6,5,8,7,2,3) 00 00
44 88 (1,5,2,4,8,3,6,7)(1,5,2,4,8,3,6,7) 00 00
The blue line marks the conjugacy class containing complex conjugation.