Properties

Label 2.76.3t2.a
Dimension 22
Group S3S_3
Conductor 7676
Indicator 11

Related objects

Downloads

Learn more

Basic invariants

Dimension:22
Group:S3S_3
Conductor:7676=2219\medspace = 2^{2} \cdot 19
Frobenius-Schur indicator: 11
Root number: 11
Artin number field: Galois closure of 3.1.76.1
Galois orbit size: 11
Smallest permutation container: S3S_3
Parity: odd
Projective image: S3S_3
Projective field: Galois closure of 3.1.76.1

Galois action

Roots of defining polynomial

The roots of ff are computed in Q23\Q_{ 23 } to precision 5.
Roots:
r1r_{ 1 } == 12+423+8232+22233+10234+O(235) 12 + 4\cdot 23 + 8\cdot 23^{2} + 22\cdot 23^{3} + 10\cdot 23^{4} +O(23^{5}) Copy content Toggle raw display
r2r_{ 2 } == 14+623+5232+7233+15234+O(235) 14 + 6\cdot 23 + 5\cdot 23^{2} + 7\cdot 23^{3} + 15\cdot 23^{4} +O(23^{5}) Copy content Toggle raw display
r3r_{ 3 } == 20+1123+9232+16233+19234+O(235) 20 + 11\cdot 23 + 9\cdot 23^{2} + 16\cdot 23^{3} + 19\cdot 23^{4} +O(23^{5}) Copy content Toggle raw display

Generators of the action on the roots r1,r2,r3 r_{ 1 }, r_{ 2 }, r_{ 3 }

Cycle notation
(1,2,3)(1,2,3)
(1,2)(1,2)

Character values on conjugacy classes

SizeOrderAction on r1,r2,r3 r_{ 1 }, r_{ 2 }, r_{ 3 } Character values
c1c1
11 11 ()() 22
33 22 (1,2)(1,2) 00
22 33 (1,2,3)(1,2,3) 1-1
The blue line marks the conjugacy class containing complex conjugation.