Properties

Label 20.132...481.70.a.a
Dimension 2020
Group S7S_7
Conductor 1.322×10531.322\times 10^{53}
Root number 11
Indicator 11

Related objects

Downloads

Learn more

Basic invariants

Dimension: 2020
Group: S7S_7
Conductor: 132 ⁣ ⁣481132\!\cdots\!481=1110131285910\medspace = 11^{10} \cdot 13^{12} \cdot 859^{10}
Frobenius-Schur indicator: 11
Root number: 11
Artin stem field: Galois closure of 7.3.1596881.1
Galois orbit size: 11
Smallest permutation container: 70
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: S7S_7
Projective stem field: Galois closure of 7.3.1596881.1

Defining polynomial

f(x)f(x)== x72x62x5+6x4x34x2+2x+1 x^{7} - 2x^{6} - 2x^{5} + 6x^{4} - x^{3} - 4x^{2} + 2x + 1 Copy content Toggle raw display .

The roots of ff are computed in an extension of Q101\Q_{ 101 } to precision 5.

Minimal polynomial of a generator aa of KK over Q101\mathbb{Q}_{ 101 }: x2+97x+2 x^{2} + 97x + 2 Copy content Toggle raw display

Roots:
r1r_{ 1 } == 15a+56+(84a+50)101+(47a+98)1012+(99a+100)1013+(56a+87)1014+O(1015) 15 a + 56 + \left(84 a + 50\right)\cdot 101 + \left(47 a + 98\right)\cdot 101^{2} + \left(99 a + 100\right)\cdot 101^{3} + \left(56 a + 87\right)\cdot 101^{4} +O(101^{5}) Copy content Toggle raw display
r2r_{ 2 } == 71+32101+1012+341013+131014+O(1015) 71 + 32\cdot 101 + 101^{2} + 34\cdot 101^{3} + 13\cdot 101^{4} +O(101^{5}) Copy content Toggle raw display
r3r_{ 3 } == 34a+85+(14a+43)101+(98a+28)1012+(55a+97)1013+(36a+99)1014+O(1015) 34 a + 85 + \left(14 a + 43\right)\cdot 101 + \left(98 a + 28\right)\cdot 101^{2} + \left(55 a + 97\right)\cdot 101^{3} + \left(36 a + 99\right)\cdot 101^{4} +O(101^{5}) Copy content Toggle raw display
r4r_{ 4 } == 26+5101+881012+381013+91014+O(1015) 26 + 5\cdot 101 + 88\cdot 101^{2} + 38\cdot 101^{3} + 9\cdot 101^{4} +O(101^{5}) Copy content Toggle raw display
r5r_{ 5 } == 67a+19+(86a+67)101+(2a+2)1012+(45a+21)1013+(64a+89)1014+O(1015) 67 a + 19 + \left(86 a + 67\right)\cdot 101 + \left(2 a + 2\right)\cdot 101^{2} + \left(45 a + 21\right)\cdot 101^{3} + \left(64 a + 89\right)\cdot 101^{4} +O(101^{5}) Copy content Toggle raw display
r6r_{ 6 } == 33+34101+801012+641013+891014+O(1015) 33 + 34\cdot 101 + 80\cdot 101^{2} + 64\cdot 101^{3} + 89\cdot 101^{4} +O(101^{5}) Copy content Toggle raw display
r7r_{ 7 } == 86a+15+(16a+69)101+(53a+3)1012+(a+47)1013+(44a+14)1014+O(1015) 86 a + 15 + \left(16 a + 69\right)\cdot 101 + \left(53 a + 3\right)\cdot 101^{2} + \left(a + 47\right)\cdot 101^{3} + \left(44 a + 14\right)\cdot 101^{4} +O(101^{5}) Copy content Toggle raw display

Generators of the action on the roots r1,,r7r_1, \ldots, r_{ 7 }

Cycle notation
(1,2,3,4,5,6,7)(1,2,3,4,5,6,7)
(1,2)(1,2)

Character values on conjugacy classes

SizeOrderAction on r1,,r7r_1, \ldots, r_{ 7 } Character valueComplex conjugation
1111()()2020
212122(1,2)(1,2)00
10510522(1,2)(3,4)(5,6)(1,2)(3,4)(5,6)00
10510522(1,2)(3,4)(1,2)(3,4)4-4
707033(1,2,3)(1,2,3)22
28028033(1,2,3)(4,5,6)(1,2,3)(4,5,6)22
21021044(1,2,3,4)(1,2,3,4)00
63063044(1,2,3,4)(5,6)(1,2,3,4)(5,6)00
50450455(1,2,3,4,5)(1,2,3,4,5)00
21021066(1,2,3)(4,5)(6,7)(1,2,3)(4,5)(6,7)22
42042066(1,2,3)(4,5)(1,2,3)(4,5)00
84084066(1,2,3,4,5,6)(1,2,3,4,5,6)00
72072077(1,2,3,4,5,6,7)(1,2,3,4,5,6,7)1-1
5045041010(1,2,3,4,5)(6,7)(1,2,3,4,5)(6,7)00
4204201212(1,2,3,4)(5,6,7)(1,2,3,4)(5,6,7)00