Properties

Label 3.15864289.42t37.a.b
Dimension 33
Group GL(3,2)\GL(3,2)
Conductor 1586428915864289
Root number not computed
Indicator 00

Related objects

Downloads

Learn more

Basic invariants

Dimension: 33
Group: GL(3,2)\GL(3,2)
Conductor: 1586428915864289=725692\medspace = 7^{2} \cdot 569^{2}
Artin stem field: Galois closure of 7.3.15864289.1
Galois orbit size: 22
Smallest permutation container: PSL(2,7)\PSL(2,7)
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: GL(3,2)\GL(3,2)
Projective stem field: Galois closure of 7.3.15864289.1

Defining polynomial

f(x)f(x)== x7x6+x54x4+4x35x2+2x+1 x^{7} - x^{6} + x^{5} - 4x^{4} + 4x^{3} - 5x^{2} + 2x + 1 Copy content Toggle raw display .

The roots of ff are computed in an extension of Q13\Q_{ 13 } to precision 6.

Minimal polynomial of a generator aa of KK over Q13\mathbb{Q}_{ 13 }: x3+2x+11 x^{3} + 2x + 11 Copy content Toggle raw display

Roots:
r1r_{ 1 } == 4a2+11a+3+(4a+12)13+(8a2+6a+6)132+(3a2+8a+5)133+10a2134+(2a2+11a+3)135+O(136) 4 a^{2} + 11 a + 3 + \left(4 a + 12\right)\cdot 13 + \left(8 a^{2} + 6 a + 6\right)\cdot 13^{2} + \left(3 a^{2} + 8 a + 5\right)\cdot 13^{3} + 10 a^{2} 13^{4} + \left(2 a^{2} + 11 a + 3\right)\cdot 13^{5} +O(13^{6}) Copy content Toggle raw display
r2r_{ 2 } == 8+913+12132+8133+11134+O(136) 8 + 9\cdot 13 + 12\cdot 13^{2} + 8\cdot 13^{3} + 11\cdot 13^{4} +O(13^{6}) Copy content Toggle raw display
r3r_{ 3 } == 10a2+8a+11+(4a2+8a)13+(6a2+a+9)132+(3a2+10a+9)133+(7a2+a)134+(10a2+3a+9)135+O(136) 10 a^{2} + 8 a + 11 + \left(4 a^{2} + 8 a\right)\cdot 13 + \left(6 a^{2} + a + 9\right)\cdot 13^{2} + \left(3 a^{2} + 10 a + 9\right)\cdot 13^{3} + \left(7 a^{2} + a\right)\cdot 13^{4} + \left(10 a^{2} + 3 a + 9\right)\cdot 13^{5} +O(13^{6}) Copy content Toggle raw display
r4r_{ 4 } == 9a+(2a2+6a+5)13+(3a2+a+12)132+(3a2+8a+4)133+(3a2+9)134+(2a2+4a+7)135+O(136) 9 a + \left(2 a^{2} + 6 a + 5\right)\cdot 13 + \left(3 a^{2} + a + 12\right)\cdot 13^{2} + \left(3 a^{2} + 8 a + 4\right)\cdot 13^{3} + \left(3 a^{2} + 9\right)\cdot 13^{4} + \left(2 a^{2} + 4 a + 7\right)\cdot 13^{5} +O(13^{6}) Copy content Toggle raw display
r5r_{ 5 } == 6a2+11a+8+(a2+9a+8)13+(2a2+10a+6)132+(7a2+11a+1)133+(4a2+6a+11)134+(4a2+10a+1)135+O(136) 6 a^{2} + 11 a + 8 + \left(a^{2} + 9 a + 8\right)\cdot 13 + \left(2 a^{2} + 10 a + 6\right)\cdot 13^{2} + \left(7 a^{2} + 11 a + 1\right)\cdot 13^{3} + \left(4 a^{2} + 6 a + 11\right)\cdot 13^{4} + \left(4 a^{2} + 10 a + 1\right)\cdot 13^{5} +O(13^{6}) Copy content Toggle raw display
r6r_{ 6 } == 12a2+7a+5+(7a2+12a+9)13+(11a2+4a+11)132+(5a2+7a+12)133+(8a2+10a+10)134+(12a2+11a+11)135+O(136) 12 a^{2} + 7 a + 5 + \left(7 a^{2} + 12 a + 9\right)\cdot 13 + \left(11 a^{2} + 4 a + 11\right)\cdot 13^{2} + \left(5 a^{2} + 7 a + 12\right)\cdot 13^{3} + \left(8 a^{2} + 10 a + 10\right)\cdot 13^{4} + \left(12 a^{2} + 11 a + 11\right)\cdot 13^{5} +O(13^{6}) Copy content Toggle raw display
r7r_{ 7 } == 7a2+6a+5+(9a2+9a+6)13+(7a2+5)132+(2a2+6a+8)133+(5a2+5a+7)134+(6a2+11a+4)135+O(136) 7 a^{2} + 6 a + 5 + \left(9 a^{2} + 9 a + 6\right)\cdot 13 + \left(7 a^{2} + 5\right)\cdot 13^{2} + \left(2 a^{2} + 6 a + 8\right)\cdot 13^{3} + \left(5 a^{2} + 5 a + 7\right)\cdot 13^{4} + \left(6 a^{2} + 11 a + 4\right)\cdot 13^{5} +O(13^{6}) Copy content Toggle raw display

Generators of the action on the roots r1,,r7r_1, \ldots, r_{ 7 }

Cycle notation
(2,6,7,4)(3,5)(2,6,7,4)(3,5)
(1,4)(2,5)(1,4)(2,5)

Character values on conjugacy classes

SizeOrderAction on r1,,r7r_1, \ldots, r_{ 7 } Character valueComplex conjugation
1111()()33
212122(1,4)(2,5)(1,4)(2,5)1-1
565633(1,6,4)(2,5,7)(1,6,4)(2,5,7)00
424244(1,5,6,7)(2,3)(1,5,6,7)(2,3)11
242477(1,2,3,5,6,7,4)(1,2,3,5,6,7,4)ζ74ζ72ζ71-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1
242477(1,5,4,3,7,2,6)(1,5,4,3,7,2,6)ζ74+ζ72+ζ7\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}