Properties

Label 2.5015.4t3.a.a
Dimension 22
Group D4D_{4}
Conductor 50155015
Root number 11
Indicator 11

Related objects

Downloads

Learn more

Basic invariants

Dimension: 22
Group: D4D_{4}
Conductor: 50155015=51759\medspace = 5 \cdot 17 \cdot 59
Frobenius-Schur indicator: 11
Root number: 11
Artin stem field: Galois closure of 4.2.426275.1
Galois orbit size: 11
Smallest permutation container: D4D_{4}
Parity: odd
Determinant: 1.5015.2t1.a.a
Projective image: C22C_2^2
Projective field: Galois closure of Q(59,85)\Q(\sqrt{-59}, \sqrt{85})

Defining polynomial

f(x)f(x)== x4x316x2+40x15 x^{4} - x^{3} - 16x^{2} + 40x - 15 Copy content Toggle raw display .

The roots of ff are computed in Q19\Q_{ 19 } to precision 6.

Roots:
r1r_{ 1 } == 5+419+7192+17193+194+15195+O(196) 5 + 4\cdot 19 + 7\cdot 19^{2} + 17\cdot 19^{3} + 19^{4} + 15\cdot 19^{5} +O(19^{6}) Copy content Toggle raw display
r2r_{ 2 } == 7+619+7192+9193+12194+5195+O(196) 7 + 6\cdot 19 + 7\cdot 19^{2} + 9\cdot 19^{3} + 12\cdot 19^{4} + 5\cdot 19^{5} +O(19^{6}) Copy content Toggle raw display
r3r_{ 3 } == 11+1819+10192+12193+18194+2195+O(196) 11 + 18\cdot 19 + 10\cdot 19^{2} + 12\cdot 19^{3} + 18\cdot 19^{4} + 2\cdot 19^{5} +O(19^{6}) Copy content Toggle raw display
r4r_{ 4 } == 16+819+12192+17193+4194+14195+O(196) 16 + 8\cdot 19 + 12\cdot 19^{2} + 17\cdot 19^{3} + 4\cdot 19^{4} + 14\cdot 19^{5} +O(19^{6}) Copy content Toggle raw display

Generators of the action on the roots r1,,r4r_1, \ldots, r_{ 4 }

Cycle notation
(1,2)(3,4)(1,2)(3,4)
(2,3)(2,3)

Character values on conjugacy classes

SizeOrderAction on r1,,r4r_1, \ldots, r_{ 4 } Character valueComplex conjugation
1111()()22
1122(1,4)(2,3)(1,4)(2,3)2-2
2222(1,2)(3,4)(1,2)(3,4)00
2222(1,4)(1,4)00
2244(1,3,4,2)(1,3,4,2)00