Properties

Label 2656.47
Modulus 26562656
Conductor 664664
Order 8282
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2656, base_ring=CyclotomicField(82)) M = H._module chi = DirichletCharacter(H, M([41,41,23]))
 
Copy content pari:[g,chi] = znchar(Mod(47,2656))
 

Basic properties

Modulus: 26562656
Conductor: 664664
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 8282
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ664(379,)\chi_{664}(379,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2656.r

χ2656(15,)\chi_{2656}(15,\cdot) χ2656(47,)\chi_{2656}(47,\cdot) χ2656(79,)\chi_{2656}(79,\cdot) χ2656(143,)\chi_{2656}(143,\cdot) χ2656(239,)\chi_{2656}(239,\cdot) χ2656(271,)\chi_{2656}(271,\cdot) χ2656(303,)\chi_{2656}(303,\cdot) χ2656(367,)\chi_{2656}(367,\cdot) χ2656(399,)\chi_{2656}(399,\cdot) χ2656(495,)\chi_{2656}(495,\cdot) χ2656(623,)\chi_{2656}(623,\cdot) χ2656(655,)\chi_{2656}(655,\cdot) χ2656(719,)\chi_{2656}(719,\cdot) χ2656(975,)\chi_{2656}(975,\cdot) χ2656(1039,)\chi_{2656}(1039,\cdot) χ2656(1103,)\chi_{2656}(1103,\cdot) χ2656(1135,)\chi_{2656}(1135,\cdot) χ2656(1167,)\chi_{2656}(1167,\cdot) χ2656(1263,)\chi_{2656}(1263,\cdot) χ2656(1295,)\chi_{2656}(1295,\cdot) χ2656(1487,)\chi_{2656}(1487,\cdot) χ2656(1551,)\chi_{2656}(1551,\cdot) χ2656(1583,)\chi_{2656}(1583,\cdot) χ2656(1679,)\chi_{2656}(1679,\cdot) χ2656(1775,)\chi_{2656}(1775,\cdot) χ2656(1839,)\chi_{2656}(1839,\cdot) χ2656(1871,)\chi_{2656}(1871,\cdot) χ2656(1967,)\chi_{2656}(1967,\cdot) χ2656(2031,)\chi_{2656}(2031,\cdot) χ2656(2063,)\chi_{2656}(2063,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ41)\Q(\zeta_{41})
Fixed field: Number field defined by a degree 82 polynomial

Values on generators

(831,997,417)(831,997,417)(1,1,e(2382))(-1,-1,e\left(\frac{23}{82}\right))

First values

aa 1-11133557799111113131515171719192121
χ2656(47,a) \chi_{ 2656 }(47, a) 1111e(841)e\left(\frac{8}{41}\right)e(341)e\left(\frac{3}{41}\right)e(6182)e\left(\frac{61}{82}\right)e(1641)e\left(\frac{16}{41}\right)e(3041)e\left(\frac{30}{41}\right)e(441)e\left(\frac{4}{41}\right)e(1141)e\left(\frac{11}{41}\right)e(2941)e\left(\frac{29}{41}\right)e(1582)e\left(\frac{15}{82}\right)e(7782)e\left(\frac{77}{82}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ2656(47,a)   \chi_{ 2656 }(47,a) \; at   a=\;a = e.g. 2