sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2656, base_ring=CyclotomicField(82))
M = H._module
chi = DirichletCharacter(H, M([41,41,23]))
pari:[g,chi] = znchar(Mod(47,2656))
χ2656(15,⋅)
χ2656(47,⋅)
χ2656(79,⋅)
χ2656(143,⋅)
χ2656(239,⋅)
χ2656(271,⋅)
χ2656(303,⋅)
χ2656(367,⋅)
χ2656(399,⋅)
χ2656(495,⋅)
χ2656(623,⋅)
χ2656(655,⋅)
χ2656(719,⋅)
χ2656(975,⋅)
χ2656(1039,⋅)
χ2656(1103,⋅)
χ2656(1135,⋅)
χ2656(1167,⋅)
χ2656(1263,⋅)
χ2656(1295,⋅)
χ2656(1487,⋅)
χ2656(1551,⋅)
χ2656(1583,⋅)
χ2656(1679,⋅)
χ2656(1775,⋅)
χ2656(1839,⋅)
χ2656(1871,⋅)
χ2656(1967,⋅)
χ2656(2031,⋅)
χ2656(2063,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(831,997,417) → (−1,−1,e(8223))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
χ2656(47,a) |
1 | 1 | e(418) | e(413) | e(8261) | e(4116) | e(4130) | e(414) | e(4111) | e(4129) | e(8215) | e(8277) |
sage:chi.jacobi_sum(n)