Properties

Label 3895.3552
Modulus $3895$
Conductor $3895$
Order $40$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3895, base_ring=CyclotomicField(40))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,20,17]))
 
pari: [g,chi] = znchar(Mod(3552,3895))
 

Basic properties

Modulus: \(3895\)
Conductor: \(3895\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(40\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3895.ea

\(\chi_{3895}(227,\cdot)\) \(\chi_{3895}(322,\cdot)\) \(\chi_{3895}(398,\cdot)\) \(\chi_{3895}(873,\cdot)\) \(\chi_{3895}(1633,\cdot)\) \(\chi_{3895}(2203,\cdot)\) \(\chi_{3895}(2488,\cdot)\) \(\chi_{3895}(2507,\cdot)\) \(\chi_{3895}(2602,\cdot)\) \(\chi_{3895}(2678,\cdot)\) \(\chi_{3895}(2887,\cdot)\) \(\chi_{3895}(2963,\cdot)\) \(\chi_{3895}(3172,\cdot)\) \(\chi_{3895}(3533,\cdot)\) \(\chi_{3895}(3552,\cdot)\) \(\chi_{3895}(3837,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{40})\)
Fixed field: Number field defined by a degree 40 polynomial

Values on generators

\((3117,2871,1236)\) → \((i,-1,e\left(\frac{17}{40}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 3895 }(3552, a) \) \(-1\)\(1\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{17}{40}\right)\)\(e\left(\frac{33}{40}\right)\)\(e\left(\frac{2}{5}\right)\)\(i\)\(e\left(\frac{11}{40}\right)\)\(e\left(\frac{9}{40}\right)\)\(e\left(\frac{17}{40}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3895 }(3552,a) \;\) at \(\;a = \) e.g. 2