Generator a, with minimal polynomial
x4−4x2+2; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, -4, 0, 1]))
gp:K = nfinit(Polrev([2, 0, -4, 0, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, -4, 0, 1]);
y2+(a3−3a)xy+y=x3+(a3−a2−3a+2)x2+(−113a3+112a2+423a−455)x−1225a3+1100a2+4334a−4038
sage:E = EllipticCurve([K([0,-3,0,1]),K([2,-3,-1,1]),K([1,0,0,0]),K([-455,423,112,-113]),K([-4038,4334,1100,-1225])])
gp:E = ellinit([Polrev([0,-3,0,1]),Polrev([2,-3,-1,1]),Polrev([1,0,0,0]),Polrev([-455,423,112,-113]),Polrev([-4038,4334,1100,-1225])], K);
magma:E := EllipticCurve([K![0,-3,0,1],K![2,-3,-1,1],K![1,0,0,0],K![-455,423,112,-113],K![-4038,4334,1100,-1225]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z/2Z
P | h^(P) | Order |
(2a3−419a2−11a+23:−873a3+27a2+4119a−219:1) | 0 | 2 |
Conductor: |
N |
= |
(1) |
= |
(1) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
1 |
= |
1 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
1 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(1) |
= |
(1) |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
1 |
= |
1 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
4374624644505560827923496904a3+8083252342956303105729121856a2−2562595786459777953350768848a−4735059594419705758581752312 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
0
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
0 |
Regulator:
|
Reg(E/K) |
= |
1
|
Néron-Tate Regulator:
|
RegNT(E/K) |
= |
1
|
Global period: |
Ω(E/K) | ≈ |
1.6302687553063589652205890031213109992 |
Tamagawa product: |
∏pcp | = |
1
|
Torsion order: |
#E(K)tor | = |
2 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 0.225151189850328 |
Analytic order of Ш:
|
Шan | = |
25 (rounded) |
0.225151190≈L(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈22⋅45.25483425⋅1.630269⋅1⋅1≈0.225151190
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is semistable.
There
are no primes
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
2, 4, 5, 8, 10, 20 and 40.
Its isogeny class
1.1-a
consists of curves linked by isogenies of
degrees dividing 40.
This elliptic curve is a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.