Properties

Label 4.4.2048.1-17.1-b8
Base field \(\Q(\zeta_{16})^+\)
Conductor norm \( 17 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{16})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, -4, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a^{3}-2a+1\right){y}={x}^{3}+\left(a^{2}+a-1\right){x}^{2}+\left(28a^{3}+6a^{2}-79a-53\right){x}+52a^{3}-20a^{2}-119a-58\)
sage: E = EllipticCurve([K([0,1,0,0]),K([-1,1,1,0]),K([1,-2,0,1]),K([-53,-79,6,28]),K([-58,-119,-20,52])])
 
gp: E = ellinit([Polrev([0,1,0,0]),Polrev([-1,1,1,0]),Polrev([1,-2,0,1]),Polrev([-53,-79,6,28]),Polrev([-58,-119,-20,52])], K);
 
magma: E := EllipticCurve([K![0,1,0,0],K![-1,1,1,0],K![1,-2,0,1],K![-53,-79,6,28],K![-58,-119,-20,52]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2+a-3)\) = \((a^2+a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 17 \) = \(17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-746a^3-3826a^2+2870a+6261)\) = \((a^2+a-3)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 582622237229761 \) = \(17^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{25337090011897879957000}{582622237229761} a^{3} + \frac{46831566314755966139568}{582622237229761} a^{2} - \frac{14823378335892769704832}{582622237229761} a - \frac{27446515898763049270664}{582622237229761} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-3 a^{3} - \frac{5}{4} a^{2} + 7 a + 7 : \frac{1}{8} a^{3} + \frac{5}{2} a^{2} - \frac{5}{2} a - \frac{7}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 7.3336089974251102570985074873585357310 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 0.729231279278903 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2+a-3)\) \(17\) \(2\) \(I_{12}\) Non-split multiplicative \(1\) \(1\) \(12\) \(12\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 17.1-b consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.