Properties

Label 5.5.65657.1-45.1-a1
Base field 5.5.65657.1
Conductor norm \( 45 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.65657.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 5, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, 5, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{4}+a^{3}+5a^{2}-2a-4\right){x}{y}+\left(-2a^{4}+3a^{3}+9a^{2}-9a-6\right){y}={x}^{3}+\left(2a^{4}-3a^{3}-8a^{2}+9a+5\right){x}^{2}+\left(-2a^{4}+5a^{3}+4a^{2}-9a+1\right){x}+2a^{4}-2a^{3}-11a^{2}+10a+5\)
sage: E = EllipticCurve([K([-4,-2,5,1,-1]),K([5,9,-8,-3,2]),K([-6,-9,9,3,-2]),K([1,-9,4,5,-2]),K([5,10,-11,-2,2])])
 
gp: E = ellinit([Polrev([-4,-2,5,1,-1]),Polrev([5,9,-8,-3,2]),Polrev([-6,-9,9,3,-2]),Polrev([1,-9,4,5,-2]),Polrev([5,10,-11,-2,2])], K);
 
magma: E := EllipticCurve([K![-4,-2,5,1,-1],K![5,9,-8,-3,2],K![-6,-9,9,3,-2],K![1,-9,4,5,-2],K![5,10,-11,-2,2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-4a)\) = \((-a^4+a^3+4a^2-2a-2)^{2}\cdot(-a^2+a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 45 \) = \(3^{2}\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^4-a^3-4a^2+4a)\) = \((-a^4+a^3+4a^2-2a-2)^{3}\cdot(-a^2+a+2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -135 \) = \(-3^{3}\cdot5\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{34992}{5} a^{4} - \frac{81598}{5} a^{3} - \frac{54171}{5} a^{2} + \frac{89407}{5} a + \frac{46644}{5} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-3 a^{4} + 5 a^{3} + 11 a^{2} - 13 a - 5 : 5 a^{4} - 9 a^{3} - 18 a^{2} + 25 a + 6 : 1\right)$
Height \(0.14944737562641485818220458685480080612\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{4} + a^{3} + 5 a^{2} - 4 a - 3 : a - 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.14944737562641485818220458685480080612 \)
Period: \( 1827.7802934846516194138399428039640557 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 2.66508936 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+a^3+4a^2-2a-2)\) \(3\) \(2\) \(III\) Additive \(1\) \(2\) \(3\) \(0\)
\((-a^2+a+2)\) \(5\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 45.1-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.