Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-208083x-36621194\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-208083xz^2-36621194z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-269675595x-1704553285050\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1190, 36857)$ | $6.4772043782725117735613891652$ | $\infty$ |
Integral points
\( \left(1190, 36857\right) \), \( \left(1190, -38048\right) \)
Invariants
Conductor: | $N$ | = | \( 1225 \) | = | $5^{2} \cdot 7^{2}$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $-6125$ | = | $-1 \cdot 5^{3} \cdot 7^{2} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( -162677523113838677 \) | = | $-1 \cdot 7 \cdot 137^{3} \cdot 2083^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2704847285073684630006342688$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.54380689222295781849955231159$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $1.0734398000116747$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.799711230731145$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 1$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.4772043782725117735613891652$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $0.11176617751452526469939232373$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 2\cdot1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L'(E,1)$ | ≈ | $1.4478647486797316047223462949 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 1.447864749 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.111766 \cdot 6.477204 \cdot 2}{1^2} \approx 1.447864749$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1776 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$5$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
$7$ | $1$ | $II$ | additive | -1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$37$ | 37B.8.2 | 37.114.4.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5180 = 2^{2} \cdot 5 \cdot 7 \cdot 37 \), index $2736$, genus $97$, and generators
$\left(\begin{array}{rr} 1 & 3256 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 148 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 28 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1037 & 0 \\ 0 & 2073 \end{array}\right),\left(\begin{array}{rr} 1925 & 3256 \\ 1924 & 1925 \end{array}\right),\left(\begin{array}{rr} 4441 & 0 \\ 0 & 3701 \end{array}\right),\left(\begin{array}{rr} 113 & 4144 \\ 148 & 1 \end{array}\right),\left(\begin{array}{rr} 105 & 3034 \\ 37 & 783 \end{array}\right),\left(\begin{array}{rr} 75 & 74 \\ 1591 & 2295 \end{array}\right),\left(\begin{array}{rr} 85 & 3108 \\ 148 & 3209 \end{array}\right),\left(\begin{array}{rr} 1 & 2590 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2591 & 2590 \\ 2590 & 2591 \end{array}\right),\left(\begin{array}{rr} 4848 & 2923 \\ 4477 & 1259 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2590 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[5180])$ is a degree-$61869588480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5180\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 245 = 5 \cdot 7^{2} \) |
$5$ | additive | $10$ | \( 49 = 7^{2} \) |
$7$ | additive | $14$ | \( 25 = 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
37.
Its isogeny class 1225.b
consists of 2 curves linked by isogenies of
degree 37.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.980.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.19208000.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.4020286921875.3 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | ord | add | add | ss | ord | ord | ord | ord | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | ? | 1 | - | - | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | ? | 0 | - | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0,0 |
An entry ? indicates that the invariants have not yet been computed.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.