Properties

Label 18176.n2
Conductor 1817618176
Discriminant 923765427712923765427712
j-invariant 174061977752961804229351 \frac{17406197775296}{1804229351}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x24319x100435y^2=x^3+x^2-4319x-100435 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z4319xz2100435z3y^2z=x^3+x^2z-4319xz^2-100435z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3349866x72167544y^2=x^3-349866x-72167544 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([0, 1, 0, -4319, -100435])
 
Copy content gp:E = ellinit([0, 1, 0, -4319, -100435])
 
Copy content magma:E := EllipticCurve([0, 1, 0, -4319, -100435]);
 
Copy content oscar:E = elliptic_curve([0, 1, 0, -4319, -100435])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(31,68)(-31, 68)3.45804012170402490362849533793.4580401217040249036284953379\infty

Integral points

(31,±68)(-31,\pm 68) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: NN  =  18176 18176  = 28712^{8} \cdot 71
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  923765427712923765427712 = 297152^{9} \cdot 71^{5}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  174061977752961804229351 \frac{17406197775296}{1804229351}  = 261131933137152^{6} \cdot 11^{3} \cdot 19^{3} \cdot 31^{3} \cdot 71^{-5}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.03122354836367801436626570421.0312235483636780143662657042
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.511363162943719032303341613110.51136316294371903230334161311
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.95567986437410120.9556798643741012
Szpiro ratio: σm\sigma_{m} ≈ 3.7445663077869923.744566307786992

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 3.45804012170402490362849533793.4580401217040249036284953379
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 0.592848079515879000615333797310.59284807951587900061533379731
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 21 2\cdot1
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.10018489008217530551342642674.1001848900821753055134264267
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

4.100184890L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5928483.4580402124.100184890\begin{aligned} 4.100184890 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.592848 \cdot 3.458040 \cdot 2}{1^2} \\ & \approx 4.100184890\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([0, 1, 0, -4319, -100435]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([0, 1, 0, -4319, -100435]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   18176.2.a.n

q+q32q53q72q9+q132q152q17q19+O(q20) q + q^{3} - 2 q^{5} - 3 q^{7} - 2 q^{9} + q^{13} - 2 q^{15} - 2 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 14720
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 IIIIII additive 1 8 9 0
7171 11 I5I_{5} nonsplit multiplicative 1 1 5 5

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
55 5Cs 5.30.0.1

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[28351, 50, 28350, 51], [16, 35, 1765, 3861], [16201, 50, 9504, 11977], [1, 50, 10, 501], [1, 50, 0, 1], [7143, 50, 25821, 5257], [16831, 50, 21535, 23121], [1, 0, 50, 1], [24801, 28350, 2375, 27201]] GL(2,Integers(28400)).subgroup(gens)
 
Copy content magma:Gens := [[28351, 50, 28350, 51], [16, 35, 1765, 3861], [16201, 50, 9504, 11977], [1, 50, 10, 501], [1, 50, 0, 1], [7143, 50, 25821, 5257], [16831, 50, 21535, 23121], [1, 0, 50, 1], [24801, 28350, 2375, 27201]]; sub<GL(2,Integers(28400))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 28400=245271 28400 = 2^{4} \cdot 5^{2} \cdot 71 , index 12001200, genus 3737, and generators

(28351502835051),(163517653861),(1620150950411977),(15010501),(15001),(714350258215257),(16831502153523121),(10501),(2480128350237527201)\left(\begin{array}{rr} 28351 & 50 \\ 28350 & 51 \end{array}\right),\left(\begin{array}{rr} 16 & 35 \\ 1765 & 3861 \end{array}\right),\left(\begin{array}{rr} 16201 & 50 \\ 9504 & 11977 \end{array}\right),\left(\begin{array}{rr} 1 & 50 \\ 10 & 501 \end{array}\right),\left(\begin{array}{rr} 1 & 50 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7143 & 50 \\ 25821 & 5257 \end{array}\right),\left(\begin{array}{rr} 16831 & 50 \\ 21535 & 23121 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 50 & 1 \end{array}\right),\left(\begin{array}{rr} 24801 & 28350 \\ 2375 & 27201 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[28400])K:=\Q(E[28400]) is a degree-153899827200000153899827200000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/28400Z)\GL_2(\Z/28400\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 71 71
55 good 22 256=28 256 = 2^{8}
7171 nonsplit multiplicative 7272 256=28 256 = 2^{8}

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 5.
Its isogeny class 18176.n consists of 3 curves linked by isogenies of degrees dividing 25.

Twists

The minimal quadratic twist of this elliptic curve is 18176.e2, its twist by 4-4.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.3.568.1 Z/2Z\Z/2\Z not in database
44 Q(ζ16)+\Q(\zeta_{16})^+ Z/5Z\Z/5\Z not in database
44 4.0.256000.4 Z/5Z\Z/5\Z not in database
66 6.6.183250432.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/10Z\Z/10\Z not in database
1212 deg 12 Z/10Z\Z/10\Z not in database
1616 16.0.4294967296000000000000.1 Z/5ZZ/5Z\Z/5\Z \oplus \Z/5\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 71
Reduction type add ord ord ord ss ord ord ord ord ord ord ord ord ord ord nonsplit
λ\lambda-invariant(s) - 3 1 3 1,1 1 1 1 1 1 1 1 1 3 1 1
μ\mu-invariant(s) - 0 1 0 0,0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.