sage: E = EllipticCurve([1, -1, 0, -2, 6])
gp: E = ellinit([1, -1, 0, -2, 6])
magma: E := EllipticCurve([1, -1, 0, -2, 6]);
oscar: E = elliptic_curve([1, -1, 0, -2, 6])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z \Z Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 1 , 3 ) (-1, 3) ( − 1 , 3 ) 0.34026683882605581237192044047 0.34026683882605581237192044047 0 . 3 4 0 2 6 6 8 3 8 8 2 6 0 5 5 8 1 2 3 7 1 9 2 0 4 4 0 4 7 ∞ \infty ∞
( − 1 , 3 ) \left(-1, 3\right) ( − 1 , 3 ) , ( − 1 , − 2 ) \left(-1, -2\right) ( − 1 , − 2 ) , ( 3 , 3 ) \left(3, 3\right) ( 3 , 3 ) , ( 3 , − 6 ) \left(3, -6\right) ( 3 , − 6 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
2450 2450 2 4 5 0 = 2 ⋅ 5 2 ⋅ 7 2 2 \cdot 5^{2} \cdot 7^{2} 2 ⋅ 5 2 ⋅ 7 2
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
− 12250 -12250 − 1 2 2 5 0 = − 1 ⋅ 2 ⋅ 5 3 ⋅ 7 2 -1 \cdot 2 \cdot 5^{3} \cdot 7^{2} − 1 ⋅ 2 ⋅ 5 3 ⋅ 7 2
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
− 189 2 -\frac{189}{2} − 2 1 8 9 = − 1 ⋅ 2 − 1 ⋅ 3 3 ⋅ 7 -1 \cdot 2^{-1} \cdot 3^{3} \cdot 7 − 1 ⋅ 2 − 1 ⋅ 3 3 ⋅ 7
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ − 0.53344214450729645125245812862 -0.53344214450729645125245812862 − 0 . 5 3 3 4 4 2 1 4 4 5 0 7 2 9 6 4 5 1 2 5 2 4 5 8 1 2 8 6 2
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 1.2601199807917070957535400858 -1.2601199807917070957535400858 − 1 . 2 6 0 1 1 9 9 8 0 7 9 1 7 0 7 0 9 5 7 5 3 5 4 0 0 8 5 8
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.917369764916668 0.917369764916668 0 . 9 1 7 3 6 9 7 6 4 9 1 6 6 6 8
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 2.168322071790253 2.168322071790253 2 . 1 6 8 3 2 2 0 7 1 7 9 0 2 5 3
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.34026683882605581237192044047 0.34026683882605581237192044047 0 . 3 4 0 2 6 6 8 3 8 8 2 6 0 5 5 8 1 2 3 7 1 9 2 0 4 4 0 4 7
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 3.4139127421632122005125732590 3.4139127421632122005125732590 3 . 4 1 3 9 1 2 7 4 2 1 6 3 2 1 2 2 0 0 5 1 2 5 7 3 2 5 9 0
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 2 2 2
= 1 ⋅ 2 ⋅ 1 1\cdot2\cdot1 1 ⋅ 2 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 2.3232825936077359179718362074 2.3232825936077359179718362074 2 . 3 2 3 2 8 2 5 9 3 6 0 7 7 3 5 9 1 7 9 7 1 8 3 6 2 0 7 4
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
2.323282594 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 3.413913 ⋅ 0.340267 ⋅ 2 1 2 ≈ 2.323282594 \begin{aligned} 2.323282594 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 3.413913 \cdot 0.340267 \cdot 2}{1^2} \\ & \approx 2.323282594\end{aligned} 2 . 3 2 3 2 8 2 5 9 4 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 3 . 4 1 3 9 1 3 ⋅ 0 . 3 4 0 2 6 7 ⋅ 2 ≈ 2 . 3 2 3 2 8 2 5 9 4
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, -1, 0, -2, 6]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, -1, 0, -2, 6]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
2450.2.a.j
q − q 2 + q 4 − q 8 − 3 q 9 + 3 q 11 − 5 q 13 + q 16 − 2 q 17 + 3 q 18 + 5 q 19 + O ( q 20 ) q - q^{2} + q^{4} - q^{8} - 3 q^{9} + 3 q^{11} - 5 q^{13} + q^{16} - 2 q^{17} + 3 q^{18} + 5 q^{19} + O(q^{20}) q − q 2 + q 4 − q 8 − 3 q 9 + 3 q 1 1 − 5 q 1 3 + q 1 6 − 2 q 1 7 + 3 q 1 8 + 5 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 3 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[1834, 13, 2717, 3628], [911, 1846, 0, 1471], [1, 26, 0, 1], [736, 13, 1547, 148], [14, 23, 871, 1431], [14, 13, 1807, 3628], [1577, 26, 2340, 1193], [3615, 26, 3614, 27], [1, 0, 26, 1]]
GL(2,Integers(3640)).subgroup(gens)
magma: Gens := [[1834, 13, 2717, 3628], [911, 1846, 0, 1471], [1, 26, 0, 1], [736, 13, 1547, 148], [14, 23, 871, 1431], [14, 13, 1807, 3628], [1577, 26, 2340, 1193], [3615, 26, 3614, 27], [1, 0, 26, 1]];
sub<GL(2,Integers(3640))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 3640 = 2 3 ⋅ 5 ⋅ 7 ⋅ 13 3640 = 2^{3} \cdot 5 \cdot 7 \cdot 13 3 6 4 0 = 2 3 ⋅ 5 ⋅ 7 ⋅ 1 3 , index 336 336 3 3 6 , genus 9 9 9 , and generators
( 1834 13 2717 3628 ) , ( 911 1846 0 1471 ) , ( 1 26 0 1 ) , ( 736 13 1547 148 ) , ( 14 23 871 1431 ) , ( 14 13 1807 3628 ) , ( 1577 26 2340 1193 ) , ( 3615 26 3614 27 ) , ( 1 0 26 1 ) \left(\begin{array}{rr}
1834 & 13 \\
2717 & 3628
\end{array}\right),\left(\begin{array}{rr}
911 & 1846 \\
0 & 1471
\end{array}\right),\left(\begin{array}{rr}
1 & 26 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
736 & 13 \\
1547 & 148
\end{array}\right),\left(\begin{array}{rr}
14 & 23 \\
871 & 1431
\end{array}\right),\left(\begin{array}{rr}
14 & 13 \\
1807 & 3628
\end{array}\right),\left(\begin{array}{rr}
1577 & 26 \\
2340 & 1193
\end{array}\right),\left(\begin{array}{rr}
3615 & 26 \\
3614 & 27
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
26 & 1
\end{array}\right) ( 1 8 3 4 2 7 1 7 1 3 3 6 2 8 ) , ( 9 1 1 0 1 8 4 6 1 4 7 1 ) , ( 1 0 2 6 1 ) , ( 7 3 6 1 5 4 7 1 3 1 4 8 ) , ( 1 4 8 7 1 2 3 1 4 3 1 ) , ( 1 4 1 8 0 7 1 3 3 6 2 8 ) , ( 1 5 7 7 2 3 4 0 2 6 1 1 9 3 ) , ( 3 6 1 5 3 6 1 4 2 6 2 7 ) , ( 1 2 6 0 1 ) .
The torsion field K : = Q ( E [ 3640 ] ) K:=\Q(E[3640]) K : = Q ( E [ 3 6 4 0 ] ) is a degree-115935805440 115935805440 1 1 5 9 3 5 8 0 5 4 4 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 3640 Z ) \GL_2(\Z/3640\Z) GL 2 ( Z / 3 6 4 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
nonsplit multiplicative
4 4 4
245 = 5 ⋅ 7 2 245 = 5 \cdot 7^{2} 2 4 5 = 5 ⋅ 7 2
5 5 5
additive
10 10 1 0
98 = 2 ⋅ 7 2 98 = 2 \cdot 7^{2} 9 8 = 2 ⋅ 7 2
7 7 7
additive
14 14 1 4
50 = 2 ⋅ 5 2 50 = 2 \cdot 5^{2} 5 0 = 2 ⋅ 5 2
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
13.
Its isogeny class 2450.j
consists of 2 curves linked by isogenies of
degree 13.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97