Properties

Label 275b3
Conductor 275275
Discriminant 171875-171875
j-invariant 5289315910115737611 -\frac{52893159101157376}{11}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3+x2195508x33338481y^2+y=x^3+x^2-195508x-33338481 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3+x2z195508xz233338481z3y^2z+yz^2=x^3+x^2z-195508xz^2-33338481z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3253378800x1552399614000y^2=x^3-253378800x-1552399614000 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 1, -195508, -33338481])
 
gp: E = ellinit([0, 1, 1, -195508, -33338481])
 
magma: E := EllipticCurve([0, 1, 1, -195508, -33338481]);
 
oscar: E = elliptic_curve([0, 1, 1, -195508, -33338481])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  275 275  = 52115^{2} \cdot 11
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  171875-171875 = 15611-1 \cdot 5^{6} \cdot 11
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  5289315910115737611 -\frac{52893159101157376}{11}  = 12121112938093-1 \cdot 2^{12} \cdot 11^{-1} \cdot 29^{3} \cdot 809^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.30142807131569730991174507181.3014280713156973099117450718
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.496709115098647122611365405190.49670911509864712261136540519
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.09295668319839861.0929566831983986
Szpiro ratio: σm\sigma_{m} ≈ 8.5749760930204738.574976093020473

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.113521531281771847798586697330.11352153128177184779858669733
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.83803828204429619496466743332.8380382820442961949646674333
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  2525 = 525^2    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.838038282L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor2250.1135221.0000001122.838038282\displaystyle 2.838038282 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{25 \cdot 0.113522 \cdot 1.000000 \cdot 1}{1^2} \approx 2.838038282

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   275.2.a.b

q+2q2+q3+2q4+2q6+2q72q9+q11+2q124q13+4q144q16+2q174q18+O(q20) q + 2 q^{2} + q^{3} + 2 q^{4} + 2 q^{6} + 2 q^{7} - 2 q^{9} + q^{11} + 2 q^{12} - 4 q^{13} + 4 q^{14} - 4 q^{16} + 2 q^{17} - 4 q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 700
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
55 11 I0I_0^{*} additive 1 2 6 0
1111 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
55 5B.1.3 25.120.0.4

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[38, 41, 191, 539], [1, 0, 50, 1], [110, 541, 423, 337], [1, 50, 0, 1], [501, 50, 500, 51], [11, 20, 265, 291]]
 
GL(2,Integers(550)).subgroup(gens)
 
Gens := [[38, 41, 191, 539], [1, 0, 50, 1], [110, 541, 423, 337], [1, 50, 0, 1], [501, 50, 500, 51], [11, 20, 265, 291]];
 
sub<GL(2,Integers(550))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 550=25211 550 = 2 \cdot 5^{2} \cdot 11 , index 12001200, genus 3737, and generators

(3841191539),(10501),(110541423337),(15001),(5015050051),(1120265291)\left(\begin{array}{rr} 38 & 41 \\ 191 & 539 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 50 & 1 \end{array}\right),\left(\begin{array}{rr} 110 & 541 \\ 423 & 337 \end{array}\right),\left(\begin{array}{rr} 1 & 50 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 501 & 50 \\ 500 & 51 \end{array}\right),\left(\begin{array}{rr} 11 & 20 \\ 265 & 291 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[550])K:=\Q(E[550]) is a degree-1980000019800000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/550Z)\GL_2(\Z/550\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
55 additive 1414 11 11
1111 split multiplicative 1212 25=52 25 = 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 5 and 25.
Its isogeny class 275b consists of 3 curves linked by isogenies of degrees dividing 25.

Twists

The minimal quadratic twist of this elliptic curve is 11a2, its twist by 55.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.44.1 Z/2Z\Z/2\Z not in database
44 Q(ζ5)\Q(\zeta_{5}) Z/5Z\Z/5\Z not in database
66 6.0.21296.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.20012416875.3 Z/3Z\Z/3\Z not in database
1010 10.2.10466742236328125.1 Z/5Z\Z/5\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 12.0.7320500000000.2 Z/10Z\Z/10\Z not in database
2020 20.0.547763465208675396442413330078125.1 Z/5ZZ/5Z\Z/5\Z \oplus \Z/5\Z not in database
2020 20.0.133731314748211766709573566913604736328125.3 Z/25Z\Z/25\Z not in database
2020 20.0.9134028737668995745480060577392578125.2 Z/25Z\Z/25\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss ord add ord split ord ord ss ord ss ord ord ord ord ord
λ\lambda-invariant(s) 0,1 4 - 0 1 0 0 0,0 2 0,0 0 0 0 0 0
μ\mu-invariant(s) 0,0 0 - 0 0 0 0 0,0 0 0,0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.