Properties

Label 294.e1
Conductor 294294
Discriminant 1.614×1012-1.614\times 10^{12}
j-invariant 6329617441279936 -\frac{6329617441}{279936}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3+x26910x232261y^2+xy+y=x^3+x^2-6910x-232261 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3+x2z6910xz2232261z3y^2z+xyz+yz^2=x^3+x^2z-6910xz^2-232261z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x38955387x10702030122y^2=x^3-8955387x-10702030122 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 1, -6910, -232261])
 
gp: E = ellinit([1, 1, 1, -6910, -232261])
 
magma: E := EllipticCurve([1, 1, 1, -6910, -232261]);
 
oscar: E = elliptic_curve([1, 1, 1, -6910, -232261])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  294 294  = 23722 \cdot 3 \cdot 7^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  1613775332736-1613775332736 = 1273778-1 \cdot 2^{7} \cdot 3^{7} \cdot 7^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  6329617441279936 -\frac{6329617441}{279936}  = 1273779673-1 \cdot 2^{-7} \cdot 3^{-7} \cdot 7 \cdot 967^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.10743163801431062341539007801.1074316380143106234153900780
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.18984179468923157998817841763-0.18984179468923157998817841763
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.0323352202486651.032335220248665
Szpiro ratio: σm\sigma_{m} ≈ 6.7227754432756396.722775443275639

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.261142918288111058704410345890.26114291828811105870441034589
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 7 7  = 711 7\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.82800042801677741093087242131.8280004280167774109308724213
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.828000428L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2611431.0000007121.828000428\displaystyle 1.828000428 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.261143 \cdot 1.000000 \cdot 7}{1^2} \approx 1.828000428

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   294.2.a.e

q+q2q3+q4+q5q6+q8+q9+q10+5q11q12q15+q164q17+q18+8q19+O(q20) q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{8} + q^{9} + q^{10} + 5 q^{11} - q^{12} - q^{15} + q^{16} - 4 q^{17} + q^{18} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 588
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 77 I7I_{7} split multiplicative -1 1 7 7
33 11 I7I_{7} nonsplit multiplicative 1 1 7 7
77 11 IVIV^{*} additive 1 2 8 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
77 7B.1.6 7.48.0.4

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[127, 14, 0, 1], [1, 0, 14, 1], [113, 14, 119, 99], [8, 5, 91, 57], [155, 14, 154, 15], [125, 70, 0, 53], [85, 14, 91, 99], [1, 14, 0, 1]]
 
GL(2,Integers(168)).subgroup(gens)
 
Gens := [[127, 14, 0, 1], [1, 0, 14, 1], [113, 14, 119, 99], [8, 5, 91, 57], [155, 14, 154, 15], [125, 70, 0, 53], [85, 14, 91, 99], [1, 14, 0, 1]];
 
sub<GL(2,Integers(168))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 168=2337 168 = 2^{3} \cdot 3 \cdot 7 , index 9696, genus 22, and generators

(1271401),(10141),(1131411999),(859157),(1551415415),(12570053),(85149199),(11401)\left(\begin{array}{rr} 127 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 113 & 14 \\ 119 & 99 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 155 & 14 \\ 154 & 15 \end{array}\right),\left(\begin{array}{rr} 125 & 70 \\ 0 & 53 \end{array}\right),\left(\begin{array}{rr} 85 & 14 \\ 91 & 99 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[168])K:=\Q(E[168]) is a degree-15482881548288 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/168Z)\GL_2(\Z/168\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 147=372 147 = 3 \cdot 7^{2}
33 nonsplit multiplicative 44 98=272 98 = 2 \cdot 7^{2}
77 additive 2626 1 1

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 7.
Its isogeny class 294.e consists of 2 curves linked by isogenies of degree 7.

Twists

The minimal quadratic twist of this elliptic curve is 294.f1, its twist by 7-7.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(7)\Q(\sqrt{-7}) Z/7Z\Z/7\Z 2.0.7.1-1764.2-c1
33 3.1.1176.1 Z/2Z\Z/2\Z not in database
66 6.0.33191424.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.0.9680832.1 Z/14Z\Z/14\Z not in database
88 8.2.6805279152.1 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/2ZZ/14Z\Z/2\Z \oplus \Z/14\Z not in database
1616 deg 16 Z/21Z\Z/21\Z not in database
2121 21.3.378818692265664781682717625943.3 Z/7Z\Z/7\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split nonsplit ord add ord ss ord ord ord ord ord ord ss ord ord
λ\lambda-invariant(s) 1 0 4 - 0 0,0 0 0 0 0 0 0 0,0 0 0
μ\mu-invariant(s) 0 0 0 - 0 0,0 0 0 0 0 0 0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.