Properties

Label 338.b2
Conductor 338338
Discriminant 84835994984-84835994984
j-invariant 13318 \frac{1331}{8}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x2+504x13112y^2+xy=x^3+x^2+504x-13112 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z+504xz213112z3y^2z+xyz=x^3+x^2z+504xz^2-13112z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+652509x621544482y^2=x^3+652509x-621544482 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, 504, -13112])
 
gp: E = ellinit([1, 1, 0, 504, -13112])
 
magma: E := EllipticCurve([1, 1, 0, 504, -13112]);
 
oscar: E = elliptic_curve([1, 1, 0, 504, -13112])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  338 338  = 21322 \cdot 13^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  84835994984-84835994984 = 123139-1 \cdot 2^{3} \cdot 13^{9}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  13318 \frac{1331}{8}  = 231132^{-3} \cdot 11^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.778896581141087122827359407100.77889658114108712282735940710
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.1448154369550654292127561741-1.1448154369550654292127561741
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.93576837136709250.9357683713670925
Szpiro ratio: σm\sigma_{m} ≈ 5.5842712846913525.584271284691352

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.539627339134083577259167637960.53962733913408357725916763796
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 12 1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.07925467826816715451833527591.0792546782681671545183352759
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.079254678L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5396271.0000002121.079254678\displaystyle 1.079254678 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.539627 \cdot 1.000000 \cdot 2}{1^2} \approx 1.079254678

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   338.2.a.b

qq2q3+q4+3q5+q6+3q7q82q93q10q123q143q15+q163q17+2q18+6q19+O(q20) q - q^{2} - q^{3} + q^{4} + 3 q^{5} + q^{6} + 3 q^{7} - q^{8} - 2 q^{9} - 3 q^{10} - q^{12} - 3 q^{14} - 3 q^{15} + q^{16} - 3 q^{17} + 2 q^{18} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 312
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I3I_{3} nonsplit multiplicative 1 1 3 3
1313 22 IIIIII^{*} additive -1 2 9 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Ns 3.6.0.1
55 5B 5.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[16, 375, 375, 1306], [781, 0, 0, 781], [481, 480, 1080, 481], [1261, 30, 1290, 1297], [1, 0, 1500, 1], [1301, 0, 0, 1301], [333, 163, 1550, 687], [1, 312, 0, 1], [781, 150, 795, 691], [1256, 1485, 1035, 1061], [521, 150, 0, 1], [1111, 930, 420, 631], [1081, 0, 0, 241], [1, 0, 30, 1], [361, 1410, 750, 181], [1, 0, 1080, 1]]
 
GL(2,Integers(1560)).subgroup(gens)
 
Gens := [[16, 375, 375, 1306], [781, 0, 0, 781], [481, 480, 1080, 481], [1261, 30, 1290, 1297], [1, 0, 1500, 1], [1301, 0, 0, 1301], [333, 163, 1550, 687], [1, 312, 0, 1], [781, 150, 795, 691], [1256, 1485, 1035, 1061], [521, 150, 0, 1], [1111, 930, 420, 631], [1081, 0, 0, 241], [1, 0, 30, 1], [361, 1410, 750, 181], [1, 0, 1080, 1]];
 
sub<GL(2,Integers(1560))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1560=233513 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 , index 576576, genus 1717, and generators

(163753751306),(78100781),(4814801080481),(12613012901297),(1015001),(1301001301),(3331631550687),(131201),(781150795691),(1256148510351061),(52115001),(1111930420631),(108100241),(10301),(3611410750181),(1010801)\left(\begin{array}{rr} 16 & 375 \\ 375 & 1306 \end{array}\right),\left(\begin{array}{rr} 781 & 0 \\ 0 & 781 \end{array}\right),\left(\begin{array}{rr} 481 & 480 \\ 1080 & 481 \end{array}\right),\left(\begin{array}{rr} 1261 & 30 \\ 1290 & 1297 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 1500 & 1 \end{array}\right),\left(\begin{array}{rr} 1301 & 0 \\ 0 & 1301 \end{array}\right),\left(\begin{array}{rr} 333 & 163 \\ 1550 & 687 \end{array}\right),\left(\begin{array}{rr} 1 & 312 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 781 & 150 \\ 795 & 691 \end{array}\right),\left(\begin{array}{rr} 1256 & 1485 \\ 1035 & 1061 \end{array}\right),\left(\begin{array}{rr} 521 & 150 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1111 & 930 \\ 420 & 631 \end{array}\right),\left(\begin{array}{rr} 1081 & 0 \\ 0 & 241 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 30 & 1 \end{array}\right),\left(\begin{array}{rr} 361 & 1410 \\ 750 & 181 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 1080 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1560])K:=\Q(E[1560]) is a degree-16102195201610219520 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1560Z)\GL_2(\Z/1560\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 13 13
33 good 22 169=132 169 = 13^{2}
1313 additive 6262 2 2

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 5.
Its isogeny class 338.b consists of 2 curves linked by isogenies of degree 5.

Twists

The minimal quadratic twist of this elliptic curve is 338.d2, its twist by 1313.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.104.1 Z/2Z\Z/2\Z not in database
44 4.2.6591.1 Z/3Z\Z/3\Z not in database
44 4.0.19773.1 Z/3Z\Z/3\Z not in database
44 4.0.2197.1 Z/5Z\Z/5\Z not in database
66 6.0.1124864.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.0.390971529.2 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
88 8.0.43441281.1 Z/15Z\Z/15\Z not in database
1212 12.2.1423311812421484544.43 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/6Z\Z/6\Z not in database
1212 12.0.43436029431808.1 Z/10Z\Z/10\Z not in database
1616 16.0.152858736488597841.1 Z/3ZZ/15Z\Z/3\Z \oplus \Z/15\Z not in database
2020 20.4.102371786028181514000000000000000.2 Z/5Z\Z/5\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit ord ord ord ss add ord ord ord ss ss ord ss ord ord
λ\lambda-invariant(s) 2 0 0 0 0,0 - 0 0 0 0,0 0,0 0 0,0 2 0
μ\mu-invariant(s) 0 0 0 0 0,0 - 0 0 0 0,0 0,0 0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.