Properties

Label 38a3
Conductor 3838
Discriminant 152-152
j-invariant 413493625152 -\frac{413493625}{152}
CM no
Rank 00
Torsion structure Z/3Z\Z/{3}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x316x+22y^2+xy+y=x^3-16x+22 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x316xz2+22z3y^2z+xyz+yz^2=x^3-16xz^2+22z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x320115x+1098414y^2=x^3-20115x+1098414 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -16, 22])
 
gp: E = ellinit([1, 0, 1, -16, 22])
 
magma: E := EllipticCurve([1, 0, 1, -16, 22]);
 
oscar: E = elliptic_curve([1, 0, 1, -16, 22])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/3Z\Z/{3}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2,1)(2, -1)0033

Integral points

(2,1) \left(2, -1\right) , (2,2) \left(2, -2\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  38 38  = 2192 \cdot 19
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  152-152 = 12319-1 \cdot 2^{3} \cdot 19
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  413493625152 -\frac{413493625}{152}  = 123531911493-1 \cdot 2^{-3} \cdot 5^{3} \cdot 19^{-1} \cdot 149^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.61344267771086611044328331685-0.61344267771086611044328331685
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.61344267771086611044328331685-0.61344267771086611044328331685
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.93280722081599580.9328072208159958
Szpiro ratio: σm\sigma_{m} ≈ 5.4543828775446445.454382877544644

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 5.67189668982689560863602450885.6718966898268956086360245088
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 33
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.630210743314099512070669389860.63021074331409951207066938986
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.630210743L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor215.6718971.0000001320.630210743\displaystyle 0.630210743 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 5.671897 \cdot 1.000000 \cdot 1}{3^2} \approx 0.630210743

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   38.2.a.a

qq2+q3+q4q6q7q82q96q11+q12+5q13+q14+q16+3q17+2q18+q19+O(q20) q - q^{2} + q^{3} + q^{4} - q^{6} - q^{7} - q^{8} - 2 q^{9} - 6 q^{11} + q^{12} + 5 q^{13} + q^{14} + q^{16} + 3 q^{17} + 2 q^{18} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 18
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 3
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I3I_{3} nonsplit multiplicative 1 1 3 3
1919 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B.1.1 27.72.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[3227, 681, 2323, 2500], [28, 27, 1521, 3592], [31, 36, 2386, 1447], [1, 54, 0, 1], [28, 27, 729, 703], [3079, 54, 0, 1], [4051, 54, 4050, 55], [1, 0, 54, 1], [484, 45, 3019, 1354]]
 
GL(2,Integers(4104)).subgroup(gens)
 
Gens := [[3227, 681, 2323, 2500], [28, 27, 1521, 3592], [31, 36, 2386, 1447], [1, 54, 0, 1], [28, 27, 729, 703], [3079, 54, 0, 1], [4051, 54, 4050, 55], [1, 0, 54, 1], [484, 45, 3019, 1354]];
 
sub<GL(2,Integers(4104))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 4104=233319 4104 = 2^{3} \cdot 3^{3} \cdot 19 , index 12961296, genus 4343, and generators

(322768123232500),(282715213592),(313623861447),(15401),(2827729703),(30795401),(405154405055),(10541),(4844530191354)\left(\begin{array}{rr} 3227 & 681 \\ 2323 & 2500 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 1521 & 3592 \end{array}\right),\left(\begin{array}{rr} 31 & 36 \\ 2386 & 1447 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right),\left(\begin{array}{rr} 3079 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4051 & 54 \\ 4050 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 484 & 45 \\ 3019 & 1354 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[4104])K:=\Q(E[4104]) is a degree-4595429376045954293760 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/4104Z)\GL_2(\Z/4104\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 19 19
33 good 22 19 19
1919 split multiplicative 2020 2 2

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3 and 9.
Its isogeny class 38a consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/3Z\cong \Z/{3}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.152.1 Z/6Z\Z/6\Z not in database
33 3.3.361.1 Z/9Z\Z/9\Z 3.3.361.1-152.1-b2
66 6.0.3511808.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.0.3518667.2 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
66 6.0.9747.1 Z/9Z\Z/9\Z not in database
99 9.3.457662330368.1 Z/18Z\Z/18\Z not in database
1212 12.2.119973433931988992.10 Z/12Z\Z/12\Z not in database
1818 18.0.43564677551979246963.1 Z/3ZZ/9Z\Z/3\Z \oplus \Z/9\Z not in database
1818 18.0.4122698998419163225428590592.1 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1818 18.0.31634955213811766525952.1 Z/18Z\Z/18\Z not in database
1818 18.0.2037576378429183552150044672.1 Z/2ZZ/18Z\Z/2\Z \oplus \Z/18\Z not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

pp 2 3 19
Reduction type nonsplit ord split
λ\lambda-invariant(s) 1 0 1
μ\mu-invariant(s) 0 0 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p5p\ge 5 of good reduction are zero.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.