Properties

Label 45760.br
Number of curves 44
Conductor 4576045760
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("br1") E.isogeny_class()
 

Elliptic curves in class 45760.br

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
45760.br1 45760o4 [0,1,0,1497985,705179775][0, -1, 0, -1497985, -705179775] 1418098748958579169/83074062501418098748958579169/8307406250 21777367040000002177736704000000 [2][2] 884736884736 2.13272.1327  
45760.br2 45760o3 [0,1,0,91905,11419903][0, -1, 0, -91905, -11419903] 327495950129089/26547449500-327495950129089/26547449500 6959254601728000-6959254601728000 [2][2] 442368442368 1.78611.7861  
45760.br3 45760o2 [0,1,0,26625,26623][0, -1, 0, -26625, -26623] 7962857630209/46060586007962857630209/4606058600 12074506256384001207450625638400 [2][2] 294912294912 1.58341.5834  
45760.br4 45760o1 [0,1,0,6655,6655][0, -1, 0, 6655, -6655] 124326214271/71980480124326214271/71980480 18869250949120-18869250949120 [2][2] 147456147456 1.23681.2368 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 45760.br have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
551T1 - T
11111+T1 + T
13131+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 12T+3T2 1 - 2 T + 3 T^{2} 1.3.ac
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1717 1+6T+17T2 1 + 6 T + 17 T^{2} 1.17.g
1919 1+8T+19T2 1 + 8 T + 19 T^{2} 1.19.i
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 45760.br do not have complex multiplication.

Modular form 45760.2.a.br

Copy content sage:E.q_eigenform(10)
 
q+2q3+q54q7+q9q11q13+2q156q178q19+O(q20)q + 2 q^{3} + q^{5} - 4 q^{7} + q^{9} - q^{11} - q^{13} + 2 q^{15} - 6 q^{17} - 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1236216336126321)\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.