sage:E = EllipticCurve("br1")
E.isogeny_class()
Elliptic curves in class 45760.br
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
45760.br1 |
45760o4 |
[0,−1,0,−1497985,−705179775] |
1418098748958579169/8307406250 |
2177736704000000 |
[2] |
884736 |
2.1327
|
|
45760.br2 |
45760o3 |
[0,−1,0,−91905,−11419903] |
−327495950129089/26547449500 |
−6959254601728000 |
[2] |
442368 |
1.7861
|
|
45760.br3 |
45760o2 |
[0,−1,0,−26625,−26623] |
7962857630209/4606058600 |
1207450625638400 |
[2] |
294912 |
1.5834
|
|
45760.br4 |
45760o1 |
[0,−1,0,6655,−6655] |
124326214271/71980480 |
−18869250949120 |
[2] |
147456 |
1.2368
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 45760.br have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1−T |
11 | 1+T |
13 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1−2T+3T2 |
1.3.ac
|
7 |
1+4T+7T2 |
1.7.e
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1+8T+19T2 |
1.19.i
|
23 |
1+23T2 |
1.23.a
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 45760.br do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1236216336126321⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.