Properties

Label 50.a3
Conductor $50$
Discriminant $-1250$
j-invariant \( -\frac{25}{2} \)
CM no
Rank $0$
Torsion structure \(\Z/{3}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy+y=x^3-x-2\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz+yz^2=x^3-xz^2-2z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-675x-79650\) Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -1, -2])
 
gp: E = ellinit([1, 0, 1, -1, -2])
 
magma: E := EllipticCurve([1, 0, 1, -1, -2]);
 
oscar: E = elliptic_curve([1, 0, 1, -1, -2])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z/{3}\Z\)

magma: MordellWeilGroup(E);
 

Torsion generators

\( \left(2, 1\right) \) Copy content Toggle raw display

comment: Torsion subgroup
 
sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 
oscar: torsion_structure(E)
 

Integral points

\( \left(2, 1\right) \), \( \left(2, -4\right) \) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: \( 50 \)  =  $2 \cdot 5^{2}$
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: $-1250 $  =  $-1 \cdot 2 \cdot 5^{4} $
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: \( -\frac{25}{2} \)  =  $-1 \cdot 2^{-1} \cdot 5^{2}$
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $-0.72609959614388153275382537999\dots$
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: $-1.2625789002885816576207451577\dots$
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
$abc$ quality: $1.0904350906962674\dots$
Szpiro ratio: $3.730250695688521\dots$

BSD invariants

Analytic rank: $0$
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Regulator: $1$
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: $2.1394949442848902680158039701\dots$
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $ 3 $  = $ 1\cdot3 $
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: $3$
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Analytic order of Ш: $1$ ( exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Special value: $ L(E,1) $ ≈ $ 0.71316498142829675600526799003 $
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

BSD formula

$\displaystyle 0.713164981 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 2.139495 \cdot 1.000000 \cdot 3}{3^2} \approx 0.713164981$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   50.2.a.a

\( q - q^{2} + q^{3} + q^{4} - q^{6} + 2 q^{7} - q^{8} - 2 q^{9} - 3 q^{11} + q^{12} - 4 q^{13} - 2 q^{14} + q^{16} - 3 q^{17} + 2 q^{18} + 5 q^{19} + O(q^{20}) \) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data

This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $v_p(N)$ $v_p(\Delta)$ $v_p(\mathrm{den}(j))$
$2$ $1$ $I_{1}$ nonsplit multiplicative 1 1 1 1
$5$ $3$ $IV$ additive -1 2 4 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2G 8.2.0.1
$3$ 3B.1.1 3.8.0.1
$5$ 5B.1.3 5.24.0.4

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[46, 105, 45, 1], [1, 42, 90, 61], [1, 0, 60, 1], [81, 10, 40, 81], [31, 90, 15, 91], [1, 72, 0, 1], [41, 80, 40, 81], [61, 90, 45, 91], [1, 0, 30, 1], [73, 90, 0, 49], [1, 36, 60, 1]]
 
GL(2,Integers(120)).subgroup(gens)
 
Gens := [[46, 105, 45, 1], [1, 42, 90, 61], [1, 0, 60, 1], [81, 10, 40, 81], [31, 90, 15, 91], [1, 72, 0, 1], [41, 80, 40, 81], [61, 90, 45, 91], [1, 0, 30, 1], [73, 90, 0, 49], [1, 36, 60, 1]];
 
sub<GL(2,Integers(120))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $384$, genus $9$, and generators

$\left(\begin{array}{rr} 46 & 105 \\ 45 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 42 \\ 90 & 61 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 60 & 1 \end{array}\right),\left(\begin{array}{rr} 81 & 10 \\ 40 & 81 \end{array}\right),\left(\begin{array}{rr} 31 & 90 \\ 15 & 91 \end{array}\right),\left(\begin{array}{rr} 1 & 72 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 41 & 80 \\ 40 & 81 \end{array}\right),\left(\begin{array}{rr} 61 & 90 \\ 45 & 91 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 30 & 1 \end{array}\right),\left(\begin{array}{rr} 73 & 90 \\ 0 & 49 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 60 & 1 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[120])$ is a degree-$92160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ nonsplit multiplicative $4$ \( 25 = 5^{2} \)
$5$ additive $14$ \( 2 \)

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3, 5 and 15.
Its isogeny class 50.a consists of 4 curves linked by isogenies of degrees dividing 15.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$3$ 3.1.200.1 \(\Z/6\Z\) not in database
$4$ \(\Q(\zeta_{5})\) \(\Z/15\Z\) not in database
$6$ 6.0.320000.1 \(\Z/2\Z \oplus \Z/6\Z\) not in database
$6$ 6.0.270000.1 \(\Z/3\Z \oplus \Z/3\Z\) not in database
$9$ 9.3.4920750000.1 \(\Z/9\Z\) not in database
$10$ 10.2.12500000000.1 \(\Z/15\Z\) not in database
$12$ 12.2.52428800000000.3 \(\Z/12\Z\) not in database
$12$ 12.0.200000000000.1 \(\Z/30\Z\) not in database
$18$ 18.0.322486272000000000000.1 \(\Z/3\Z \oplus \Z/6\Z\) not in database
$20$ 20.0.781250000000000000000.1 \(\Z/5\Z \oplus \Z/15\Z\) not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

$p$ 2 3 5
Reduction type nonsplit ord add
$\lambda$-invariant(s) 2 2 -
$\mu$-invariant(s) 0 0 -

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

$p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.

Additional information

This curve $E$ also has a double cover by Bring's curve $$ B \subset {\bf P}^4: \sum_{i=1}^5 x_i = \sum_{i=1}^5 x_i^2 = \sum_{i=1}^5 x_i^3 = 0$$ of genus $4$. Indeed $B$ has automorphisms by $S_5$ (permuting the projective coordinates $x_i$), and the quotient by a simple transposition $\sigma \in S_5$ is $E$. The $3$-cycles that commute with $\sigma$ act on $B$ by translation by the $3$-torsion points of $E$.