y 2 = x 3 + x 2 − 4788 x + 109188 y^2=x^3+x^2-4788x+109188 y 2 = x 3 + x 2 − 4 7 8 8 x + 1 0 9 1 8 8
(homogenize , simplify )
y 2 z = x 3 + x 2 z − 4788 x z 2 + 109188 z 3 y^2z=x^3+x^2z-4788xz^2+109188z^3 y 2 z = x 3 + x 2 z − 4 7 8 8 x z 2 + 1 0 9 1 8 8 z 3
(dehomogenize , simplify )
y 2 = x 3 − 387855 x + 80761590 y^2=x^3-387855x+80761590 y 2 = x 3 − 3 8 7 8 5 5 x + 8 0 7 6 1 5 9 0
(homogenize , minimize )
sage: E = EllipticCurve([0, 1, 0, -4788, 109188])
gp: E = ellinit([0, 1, 0, -4788, 109188])
magma: E := EllipticCurve([0, 1, 0, -4788, 109188]);
oscar: E = elliptic_curve([0, 1, 0, -4788, 109188])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z \Z Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 36 , 486 ) (-36, 486) ( − 3 6 , 4 8 6 ) 0.22890416659845814345781307366 0.22890416659845814345781307366 0 . 2 2 8 9 0 4 1 6 6 5 9 8 4 5 8 1 4 3 4 5 7 8 1 3 0 7 3 6 6 ∞ \infty ∞
( − 36 , ± 486 ) (-36,\pm 486) ( − 3 6 , ± 4 8 6 ) , ( 27 , ± 18 ) (27,\pm 18) ( 2 7 , ± 1 8 ) , ( 72 , ± 378 ) (72,\pm 378) ( 7 2 , ± 3 7 8 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
50700 50700 5 0 7 0 0 = 2 2 ⋅ 3 ⋅ 5 2 ⋅ 1 3 2 2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2} 2 2 ⋅ 3 ⋅ 5 2 ⋅ 1 3 2
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
1724419756800 1724419756800 1 7 2 4 4 1 9 7 5 6 8 0 0 = 2 8 ⋅ 3 13 ⋅ 5 2 ⋅ 1 3 2 2^{8} \cdot 3^{13} \cdot 5^{2} \cdot 13^{2} 2 8 ⋅ 3 1 3 ⋅ 5 2 ⋅ 1 3 2
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
11225615440 1594323 \frac{11225615440}{1594323} 1 5 9 4 3 2 3 1 1 2 2 5 6 1 5 4 4 0 = 2 4 ⋅ 3 − 13 ⋅ 5 ⋅ 1 3 4 ⋅ 1 7 3 2^{4} \cdot 3^{-13} \cdot 5 \cdot 13^{4} \cdot 17^{3} 2 4 ⋅ 3 − 1 3 ⋅ 5 ⋅ 1 3 4 ⋅ 1 7 3
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 1.0738231687105668741730086358 1.0738231687105668741730086358 1 . 0 7 3 8 2 3 1 6 8 7 1 0 5 6 6 8 7 4 1 7 3 0 0 8 6 3 5 8
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 0.084006163312002850547520574304 -0.084006163312002850547520574304 − 0 . 0 8 4 0 0 6 1 6 3 3 1 2 0 0 2 8 5 0 5 4 7 5 2 0 5 7 4 3 0 4
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.08097832103641 1.08097832103641 1 . 0 8 0 9 7 8 3 2 1 0 3 6 4 1
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 3.4185440232986752 3.4185440232986752 3 . 4 1 8 5 4 4 0 2 3 2 9 8 6 7 5 2
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.22890416659845814345781307366 0.22890416659845814345781307366 0 . 2 2 8 9 0 4 1 6 6 5 9 8 4 5 8 1 4 3 4 5 7 8 1 3 0 7 3 6 6
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 0.80613592013096371078099308648 0.80613592013096371078099308648 0 . 8 0 6 1 3 5 9 2 0 1 3 0 9 6 3 7 1 0 7 8 0 9 9 3 0 8 6 4 8
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 39 39 3 9
= 3 ⋅ 13 ⋅ 1 ⋅ 1 3\cdot13\cdot1\cdot1 3 ⋅ 1 3 ⋅ 1 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 7.1965869675437191400240132922 7.1965869675437191400240132922 7 . 1 9 6 5 8 6 9 6 7 5 4 3 7 1 9 1 4 0 0 2 4 0 1 3 2 9 2 2
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
7.196586968 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.806136 ⋅ 0.228904 ⋅ 39 1 2 ≈ 7.196586968 \begin{aligned} 7.196586968 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.806136 \cdot 0.228904 \cdot 39}{1^2} \\ & \approx 7.196586968\end{aligned} 7 . 1 9 6 5 8 6 9 6 8 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 0 . 8 0 6 1 3 6 ⋅ 0 . 2 2 8 9 0 4 ⋅ 3 9 ≈ 7 . 1 9 6 5 8 6 9 6 8
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, 1, 0, -4788, 109188]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, 1, 0, -4788, 109188]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
50700.2.a.z
q + q 3 + q 9 − 3 q 11 + O ( q 20 ) q + q^{3} + q^{9} - 3 q^{11} + O(q^{20}) q + q 3 + q 9 − 3 q 1 1 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[105, 104, 52, 105], [53, 0, 0, 53], [79, 78, 78, 79], [92, 117, 91, 131], [151, 38, 44, 71], [27, 14, 142, 39], [1, 78, 0, 1], [31, 52, 9, 47], [125, 98, 39, 5], [1, 0, 52, 1], [1, 0, 78, 1], [65, 150, 48, 65]]
GL(2,Integers(156)).subgroup(gens)
magma: Gens := [[105, 104, 52, 105], [53, 0, 0, 53], [79, 78, 78, 79], [92, 117, 91, 131], [151, 38, 44, 71], [27, 14, 142, 39], [1, 78, 0, 1], [31, 52, 9, 47], [125, 98, 39, 5], [1, 0, 52, 1], [1, 0, 78, 1], [65, 150, 48, 65]];
sub<GL(2,Integers(156))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 156 = 2 2 ⋅ 3 ⋅ 13 156 = 2^{2} \cdot 3 \cdot 13 1 5 6 = 2 2 ⋅ 3 ⋅ 1 3 , index 182 182 1 8 2 , genus 10 10 1 0 , and generators
( 105 104 52 105 ) , ( 53 0 0 53 ) , ( 79 78 78 79 ) , ( 92 117 91 131 ) , ( 151 38 44 71 ) , ( 27 14 142 39 ) , ( 1 78 0 1 ) , ( 31 52 9 47 ) , ( 125 98 39 5 ) , ( 1 0 52 1 ) , ( 1 0 78 1 ) , ( 65 150 48 65 ) \left(\begin{array}{rr}
105 & 104 \\
52 & 105
\end{array}\right),\left(\begin{array}{rr}
53 & 0 \\
0 & 53
\end{array}\right),\left(\begin{array}{rr}
79 & 78 \\
78 & 79
\end{array}\right),\left(\begin{array}{rr}
92 & 117 \\
91 & 131
\end{array}\right),\left(\begin{array}{rr}
151 & 38 \\
44 & 71
\end{array}\right),\left(\begin{array}{rr}
27 & 14 \\
142 & 39
\end{array}\right),\left(\begin{array}{rr}
1 & 78 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
31 & 52 \\
9 & 47
\end{array}\right),\left(\begin{array}{rr}
125 & 98 \\
39 & 5
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
52 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
78 & 1
\end{array}\right),\left(\begin{array}{rr}
65 & 150 \\
48 & 65
\end{array}\right) ( 1 0 5 5 2 1 0 4 1 0 5 ) , ( 5 3 0 0 5 3 ) , ( 7 9 7 8 7 8 7 9 ) , ( 9 2 9 1 1 1 7 1 3 1 ) , ( 1 5 1 4 4 3 8 7 1 ) , ( 2 7 1 4 2 1 4 3 9 ) , ( 1 0 7 8 1 ) , ( 3 1 9 5 2 4 7 ) , ( 1 2 5 3 9 9 8 5 ) , ( 1 5 2 0 1 ) , ( 1 7 8 0 1 ) , ( 6 5 4 8 1 5 0 6 5 ) .
The torsion field K : = Q ( E [ 156 ] ) K:=\Q(E[156]) K : = Q ( E [ 1 5 6 ] ) is a degree-663552 663552 6 6 3 5 5 2 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 156 Z ) \GL_2(\Z/156\Z) GL 2 ( Z / 1 5 6 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
additive
2 2 2
12675 = 3 ⋅ 5 2 ⋅ 1 3 2 12675 = 3 \cdot 5^{2} \cdot 13^{2} 1 2 6 7 5 = 3 ⋅ 5 2 ⋅ 1 3 2
3 3 3
split multiplicative
4 4 4
16900 = 2 2 ⋅ 5 2 ⋅ 1 3 2 16900 = 2^{2} \cdot 5^{2} \cdot 13^{2} 1 6 9 0 0 = 2 2 ⋅ 5 2 ⋅ 1 3 2
5 5 5
additive
10 10 1 0
2028 = 2 2 ⋅ 3 ⋅ 1 3 2 2028 = 2^{2} \cdot 3 \cdot 13^{2} 2 0 2 8 = 2 2 ⋅ 3 ⋅ 1 3 2
13 13 1 3
additive
38 38 3 8
100 = 2 2 ⋅ 5 2 100 = 2^{2} \cdot 5^{2} 1 0 0 = 2 2 ⋅ 5 2
gp: ellisomat(E)
This curve has no rational isogenies. Its isogeny class 50700.z
consists of this curve only.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
3 3 3
3.3.50700.1
Z / 2 Z \Z/2\Z Z / 2 Z
not in database
6 6 6
6.6.30845880000.1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
8 8 8
deg 8
Z / 3 Z \Z/3\Z Z / 3 Z
not in database
12 12 1 2
deg 12
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
p p p
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
Reduction type
add
split
add
ss
ord
add
ss
ss
ord
ord
ss
ord
ord
ord
ss
λ \lambda λ -invariant(s)
-
2
-
3,1
1
-
1,1
1,1
1
1
1,1
1
1
1
1,1
μ \mu μ -invariant(s)
-
0
-
0,0
0
-
0,0
0,0
0
0
0,0
0
0
0
0,0
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
7
17
31
37
43
47
53
61
67
71
73
79
83
89
97