Properties

Label 50700.z1
Conductor 5070050700
Discriminant 1.724×10121.724\times 10^{12}
j-invariant 112256154401594323 \frac{11225615440}{1594323}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x24788x+109188y^2=x^3+x^2-4788x+109188 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z4788xz2+109188z3y^2z=x^3+x^2z-4788xz^2+109188z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3387855x+80761590y^2=x^3-387855x+80761590 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, -4788, 109188])
 
gp: E = ellinit([0, 1, 0, -4788, 109188])
 
magma: E := EllipticCurve([0, 1, 0, -4788, 109188]);
 
oscar: E = elliptic_curve([0, 1, 0, -4788, 109188])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(36,486)(-36, 486)0.228904166598458143457813073660.22890416659845814345781307366\infty

Integral points

(36,±486)(-36,\pm 486), (27,±18)(27,\pm 18), (72,±378)(72,\pm 378) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  50700 50700  = 223521322^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  17244197568001724419756800 = 28313521322^{8} \cdot 3^{13} \cdot 5^{2} \cdot 13^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  112256154401594323 \frac{11225615440}{1594323}  = 2431351341732^{4} \cdot 3^{-13} \cdot 5 \cdot 13^{4} \cdot 17^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.07382316871056687417300863581.0738231687105668741730086358
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.084006163312002850547520574304-0.084006163312002850547520574304
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.080978321036411.08097832103641
Szpiro ratio: σm\sigma_{m} ≈ 3.41854402329867523.4185440232986752

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.228904166598458143457813073660.22890416659845814345781307366
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.806135920130963710780993086480.80613592013096371078099308648
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 39 39  = 31311 3\cdot13\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 7.19658696754371914002401329227.1965869675437191400240132922
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

7.196586968L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.8061360.22890439127.196586968\displaystyle 7.196586968 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.806136 \cdot 0.228904 \cdot 39}{1^2} \approx 7.196586968

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 50700.2.a.z

q+q3+q93q11+O(q20) q + q^{3} + q^{9} - 3 q^{11} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 56160
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 33 IVIV^{*} additive -1 2 8 0
33 1313 I13I_{13} split multiplicative -1 1 13 13
55 11 IIII additive 1 2 2 0
1313 11 IIII additive 1 2 2 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
1313 13S4 13.91.3.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[105, 104, 52, 105], [53, 0, 0, 53], [79, 78, 78, 79], [92, 117, 91, 131], [151, 38, 44, 71], [27, 14, 142, 39], [1, 78, 0, 1], [31, 52, 9, 47], [125, 98, 39, 5], [1, 0, 52, 1], [1, 0, 78, 1], [65, 150, 48, 65]]
 
GL(2,Integers(156)).subgroup(gens)
 
Gens := [[105, 104, 52, 105], [53, 0, 0, 53], [79, 78, 78, 79], [92, 117, 91, 131], [151, 38, 44, 71], [27, 14, 142, 39], [1, 78, 0, 1], [31, 52, 9, 47], [125, 98, 39, 5], [1, 0, 52, 1], [1, 0, 78, 1], [65, 150, 48, 65]];
 
sub<GL(2,Integers(156))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 156=22313 156 = 2^{2} \cdot 3 \cdot 13 , index 182182, genus 1010, and generators

(10510452105),(530053),(79787879),(9211791131),(151384471),(271414239),(17801),(3152947),(12598395),(10521),(10781),(651504865)\left(\begin{array}{rr} 105 & 104 \\ 52 & 105 \end{array}\right),\left(\begin{array}{rr} 53 & 0 \\ 0 & 53 \end{array}\right),\left(\begin{array}{rr} 79 & 78 \\ 78 & 79 \end{array}\right),\left(\begin{array}{rr} 92 & 117 \\ 91 & 131 \end{array}\right),\left(\begin{array}{rr} 151 & 38 \\ 44 & 71 \end{array}\right),\left(\begin{array}{rr} 27 & 14 \\ 142 & 39 \end{array}\right),\left(\begin{array}{rr} 1 & 78 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 31 & 52 \\ 9 & 47 \end{array}\right),\left(\begin{array}{rr} 125 & 98 \\ 39 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 52 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 78 & 1 \end{array}\right),\left(\begin{array}{rr} 65 & 150 \\ 48 & 65 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[156])K:=\Q(E[156]) is a degree-663552663552 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/156Z)\GL_2(\Z/156\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 12675=352132 12675 = 3 \cdot 5^{2} \cdot 13^{2}
33 split multiplicative 44 16900=2252132 16900 = 2^{2} \cdot 5^{2} \cdot 13^{2}
55 additive 1010 2028=223132 2028 = 2^{2} \cdot 3 \cdot 13^{2}
1313 additive 3838 100=2252 100 = 2^{2} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 50700.z consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.3.50700.1 Z/2Z\Z/2\Z not in database
66 6.6.30845880000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add split add ss ord add ss ss ord ord ss ord ord ord ss
λ\lambda-invariant(s) - 2 - 3,1 1 - 1,1 1,1 1 1 1,1 1 1 1 1,1
μ\mu-invariant(s) - 0 - 0,0 0 - 0,0 0,0 0 0 0,0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.