sage: E = EllipticCurve([1, -1, 0, -107, 454])
gp: E = ellinit([1, -1, 0, -107, 454])
magma: E := EllipticCurve([1, -1, 0, -107, 454]);
oscar: E = elliptic_curve([1, -1, 0, -107, 454])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z \Z Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 6 , − 2 ) (6, -2) ( 6 , − 2 ) 0.68535567930805105846610549935 0.68535567930805105846610549935 0 . 6 8 5 3 5 5 6 7 9 3 0 8 0 5 1 0 5 8 4 6 6 1 0 5 4 9 9 3 5 ∞ \infty ∞
( 6 , − 2 ) \left(6, -2\right) ( 6 , − 2 ) , ( 6 , − 4 ) \left(6, -4\right) ( 6 , − 4 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
637 637 6 3 7 = 7 2 ⋅ 13 7^{2} \cdot 13 7 2 ⋅ 1 3
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
− 31213 -31213 − 3 1 2 1 3 = − 1 ⋅ 7 4 ⋅ 13 -1 \cdot 7^{4} \cdot 13 − 1 ⋅ 7 4 ⋅ 1 3
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
− 56723625 13 -\frac{56723625}{13} − 1 3 5 6 7 2 3 6 2 5 = − 1 ⋅ 3 3 ⋅ 5 3 ⋅ 7 5 ⋅ 1 3 − 1 -1 \cdot 3^{3} \cdot 5^{3} \cdot 7^{5} \cdot 13^{-1} − 1 ⋅ 3 3 ⋅ 5 3 ⋅ 7 5 ⋅ 1 3 − 1
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ − 0.14604389478352659091227482717 -0.14604389478352659091227482717 − 0 . 1 4 6 0 4 3 8 9 4 7 8 3 5 2 6 5 9 0 9 1 2 2 7 4 8 2 7 1 7
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 0.79468061113529769261405907498 -0.79468061113529769261405907498 − 0 . 7 9 4 6 8 0 6 1 1 1 3 5 2 9 7 6 9 2 6 1 4 0 5 9 0 7 4 9 8
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.2831133310207903 1.2831133310207903 1 . 2 8 3 1 1 3 3 3 1 0 2 0 7 9 0 3
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 3.970675625658628 3.970675625658628 3 . 9 7 0 6 7 5 6 2 5 6 5 8 6 2 8
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.68535567930805105846610549935 0.68535567930805105846610549935 0 . 6 8 5 3 5 5 6 7 9 3 0 8 0 5 1 0 5 8 4 6 6 1 0 5 4 9 9 3 5
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 3.6103936642728308542325083898 3.6103936642728308542325083898 3 . 6 1 0 3 9 3 6 6 4 2 7 2 8 3 0 8 5 4 2 3 2 5 0 8 3 8 9 8
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 1 1 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 2.4744038023471896211132374984 2.4744038023471896211132374984 2 . 4 7 4 4 0 3 8 0 2 3 4 7 1 8 9 6 2 1 1 1 3 2 3 7 4 9 8 4
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
2.474403802 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 3.610394 ⋅ 0.685356 ⋅ 1 1 2 ≈ 2.474403802 \begin{aligned} 2.474403802 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 3.610394 \cdot 0.685356 \cdot 1}{1^2} \\ & \approx 2.474403802\end{aligned} 2 . 4 7 4 4 0 3 8 0 2 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 3 . 6 1 0 3 9 4 ⋅ 0 . 6 8 5 3 5 6 ⋅ 1 ≈ 2 . 4 7 4 4 0 3 8 0 2
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, -1, 0, -107, 454]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, -1, 0, -107, 454]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
637.2.a.c
q + q 2 − q 4 − 3 q 8 − 3 q 9 − 3 q 11 − q 13 − q 16 + 7 q 17 − 3 q 18 − 7 q 19 + O ( q 20 ) q + q^{2} - q^{4} - 3 q^{8} - 3 q^{9} - 3 q^{11} - q^{13} - q^{16} + 7 q^{17} - 3 q^{18} - 7 q^{19} + O(q^{20}) q + q 2 − q 4 − 3 q 8 − 3 q 9 − 3 q 1 1 − q 1 3 − q 1 6 + 7 q 1 7 − 3 q 1 8 − 7 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 2 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[351, 14, 350, 15], [1, 14, 0, 1], [191, 114, 98, 187], [1, 0, 14, 1], [8, 5, 91, 57], [197, 14, 287, 99], [183, 14, 189, 99]]
GL(2,Integers(364)).subgroup(gens)
magma: Gens := [[351, 14, 350, 15], [1, 14, 0, 1], [191, 114, 98, 187], [1, 0, 14, 1], [8, 5, 91, 57], [197, 14, 287, 99], [183, 14, 189, 99]];
sub<GL(2,Integers(364))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 364 = 2 2 ⋅ 7 ⋅ 13 364 = 2^{2} \cdot 7 \cdot 13 3 6 4 = 2 2 ⋅ 7 ⋅ 1 3 , index 96 96 9 6 , genus 2 2 2 , and generators
( 351 14 350 15 ) , ( 1 14 0 1 ) , ( 191 114 98 187 ) , ( 1 0 14 1 ) , ( 8 5 91 57 ) , ( 197 14 287 99 ) , ( 183 14 189 99 ) \left(\begin{array}{rr}
351 & 14 \\
350 & 15
\end{array}\right),\left(\begin{array}{rr}
1 & 14 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
191 & 114 \\
98 & 187
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
14 & 1
\end{array}\right),\left(\begin{array}{rr}
8 & 5 \\
91 & 57
\end{array}\right),\left(\begin{array}{rr}
197 & 14 \\
287 & 99
\end{array}\right),\left(\begin{array}{rr}
183 & 14 \\
189 & 99
\end{array}\right) ( 3 5 1 3 5 0 1 4 1 5 ) , ( 1 0 1 4 1 ) , ( 1 9 1 9 8 1 1 4 1 8 7 ) , ( 1 1 4 0 1 ) , ( 8 9 1 5 5 7 ) , ( 1 9 7 2 8 7 1 4 9 9 ) , ( 1 8 3 1 8 9 1 4 9 9 ) .
The torsion field K : = Q ( E [ 364 ] ) K:=\Q(E[364]) K : = Q ( E [ 3 6 4 ] ) is a degree-52835328 52835328 5 2 8 3 5 3 2 8 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 364 Z ) \GL_2(\Z/364\Z) GL 2 ( Z / 3 6 4 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
7.
Its isogeny class 637.c
consists of 2 curves linked by isogenies of
degree 7.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
5
17
19
23
29
31
37
43
53
59
61
67
71
73
79
83
89