Properties

Label 15T25
15T25 1 6 1->6 2 7 2->7 3 3->6 8 3->8 4 9 4->9 5 10 5->10 6->9 11 6->11 12 7->12 13 8->13 9->12 14 9->14 15 10->15 11->1 12->2 12->15 13->3 14->4 15->3 15->5
Degree 1515
Order 375375
Cyclic no
Abelian no
Solvable yes
Primitive no
pp-group no
Group: C5C3C_5\wr C_3

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(15, 25);
 

Group invariants

Abstract group:  C5C3C_5\wr C_3
Copy content magma:IdentifyGroup(G);
 
Order:  375=353375=3 \cdot 5^{3}
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree nn:  1515
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number tt:  2525
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   [53]3=5wr3[5^{3}]3=5wr3
Parity:  11
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
#Aut(F/K)\card{\Aut(F/K)}:  55
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (3,6,9,12,15)(3,6,9,12,15)
Copy content magma:Generators(G);
 

Low degree resolvents

#(G/N)\card{(G/N)}Galois groups for stem field(s)
33C3C_3
55C5C_5
1515C15C_{15}
7575C52:C3C_5^2 : C_3

Resolvents shown for degrees 47\leq 47

Subfields

Degree 3: C3C_3

Degree 5: None

Low degree siblings

15T25 x 7

Siblings are shown with degree 47\leq 47

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

55 x 55 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed