Properties

Label 22T38
22T38 1 5 1->5 17 1->17 2 2->17 3 8 3->8 20 3->20 4 4->3 21 4->21 10 5->10 5->10 6 6->4 16 6->16 7 18 7->18 8->1 8->4 9 9->5 9->18 10->1 22 10->22 11 14 11->14 12 12->2 19 12->19 13 13->7 14->3 14->20 15 15->12 16->13 16->19 17->9 17->12 18->6 18->21 19->6 19->11 20->15 20->22 21->9 21->16 22->8 22->14
Degree $22$
Order $443520$
Cyclic no
Abelian no
Solvable no
Primitive yes
$p$-group no
Group: $M_{22}$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(22, 38);
 

Group invariants

Abstract group:  $M_{22}$
Copy content magma:IdentifyGroup(G);
 
Order:  $443520=2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  no
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $22$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $38$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  yes
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,17,9,5,10,22,8)(3,20,15,12,19,11,14)(4,21,16,13,7,18,6)$, $(1,5,10)(2,17,12)(3,8,4)(6,16,19)(9,18,21)(14,20,22)$
Copy content magma:Generators(G);
 

Low degree resolvents

none

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 11: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{22}$ $1$ $1$ $0$ $()$
2A $2^{8},1^{6}$ $1155$ $2$ $8$ $( 1,15)( 2, 4)( 3, 9)( 6,18)( 7,16)(10,20)(13,21)(17,19)$
3A $3^{6},1^{4}$ $12320$ $3$ $12$ $( 1, 6, 3)( 2,19,10)( 4,17,20)( 5,14,22)( 8,12,11)( 9,15,18)$
4A $4^{4},2^{2},1^{2}$ $13860$ $4$ $14$ $( 1,13,20,15)( 2,19)( 3,17, 5, 8)( 4,11,22, 6)( 7,21)( 9,12,18,14)$
4B $4^{4},2^{2},1^{2}$ $27720$ $4$ $14$ $( 1,20)( 2,12, 9,17)( 3,15,14,16)( 5, 8)( 7,18,22,13)(10,11,19,21)$
5A $5^{4},1^{2}$ $88704$ $5$ $16$ $( 1,15,14, 6,11)( 2,20, 8,13, 9)( 3,22,16,10, 5)( 7,12,21,19,17)$
6A $6^{2},3^{2},2^{2}$ $36960$ $6$ $16$ $( 1, 9, 6,15, 3,18)( 2,20,19, 4,10,17)( 5,22,14)( 7,16)( 8,11,12)(13,21)$
7A1 $7^{3},1$ $63360$ $7$ $18$ $( 1,18,20, 8,15, 3,21)( 2, 6, 5,10, 7,17, 4)( 9,11,14,13,22,16,19)$
7A-1 $7^{3},1$ $63360$ $7$ $18$ $( 1,21, 3,15, 8,20,18)( 2, 4,17, 7,10, 5, 6)( 9,19,16,22,13,14,11)$
8A $8^{2},4,2$ $55440$ $8$ $18$ $( 1, 5,13, 8,20, 3,15,17)( 2, 7,19,21)( 4,14,11, 9,22,12, 6,18)(10,16)$
11A1 $11^{2}$ $40320$ $11$ $20$ $( 1, 8,20,14,21,18, 6,15,12, 4,17)( 2,11,19,22, 3,10,13, 5, 9, 7,16)$
11A-1 $11^{2}$ $40320$ $11$ $20$ $( 1,17, 4,12,15, 6,18,21,14,20, 8)( 2,16, 7, 9, 5,13,10, 3,22,19,11)$

Malle's constant $a(G)$:     $1/8$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 3A 4A 4B 5A 6A 7A1 7A-1 8A 11A1 11A-1
Size 1 1155 12320 13860 27720 88704 36960 63360 63360 55440 40320 40320
2 P 1A 1A 3A 2A 2A 5A 3A 7A1 7A-1 4A 11A-1 11A1
3 P 1A 2A 1A 4A 4B 5A 2A 7A-1 7A1 8A 11A1 11A-1
5 P 1A 2A 3A 4A 4B 1A 6A 7A-1 7A1 8A 11A1 11A-1
7 P 1A 2A 3A 4A 4B 5A 6A 1A 1A 8A 11A-1 11A1
11 P 1A 2A 3A 4A 4B 5A 6A 7A1 7A-1 8A 1A 1A
Type
443520.a.1a R 1 1 1 1 1 1 1 1 1 1 1 1
443520.a.21a R 21 5 3 1 1 1 1 0 0 1 1 1
443520.a.45a1 C 45 3 0 1 1 0 0 ζ731ζ7ζ72 ζ73+ζ7+ζ72 1 1 1
443520.a.45a2 C 45 3 0 1 1 0 0 ζ73+ζ7+ζ72 ζ731ζ7ζ72 1 1 1
443520.a.55a R 55 7 1 3 1 0 1 1 1 1 0 0
443520.a.99a R 99 3 0 3 1 1 0 1 1 1 0 0
443520.a.154a R 154 10 1 2 2 1 1 0 0 0 0 0
443520.a.210a R 210 2 3 2 2 0 1 0 0 0 1 1
443520.a.231a R 231 7 3 1 1 1 1 0 0 1 0 0
443520.a.280a1 C 280 8 1 0 0 0 1 0 0 0 ζ1121ζ11ζ113ζ114ζ115 ζ112+ζ11+ζ113+ζ114+ζ115
443520.a.280a2 C 280 8 1 0 0 0 1 0 0 0 ζ112+ζ11+ζ113+ζ114+ζ115 ζ1121ζ11ζ113ζ114ζ115
443520.a.385a R 385 1 2 1 1 0 2 0 0 1 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

$f_{ 1 } =$ $\left(5 x^{4}+34 x^{3}-119 x^{2}+212 x-164\right)^{4} \left(19 x^{3}-12 x^{2}+28 x+32\right)^{2}-2^{22} \left(x^{2}-x+3\right)^{11}/\left(11 t^{2}+1\right)$ Copy content Toggle raw display