Show commands: Magma
Group invariants
Abstract group: | $M_{22}$ |
| |
Order: | $443520=2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $22$ |
| |
Transitive number $t$: | $38$ |
| |
Parity: | $1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,17,9,5,10,22,8)(3,20,15,12,19,11,14)(4,21,16,13,7,18,6)$, $(1,5,10)(2,17,12)(3,8,4)(6,16,19)(9,18,21)(14,20,22)$ |
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 11: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{22}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8},1^{6}$ | $1155$ | $2$ | $8$ | $( 1,15)( 2, 4)( 3, 9)( 6,18)( 7,16)(10,20)(13,21)(17,19)$ |
3A | $3^{6},1^{4}$ | $12320$ | $3$ | $12$ | $( 1, 6, 3)( 2,19,10)( 4,17,20)( 5,14,22)( 8,12,11)( 9,15,18)$ |
4A | $4^{4},2^{2},1^{2}$ | $13860$ | $4$ | $14$ | $( 1,13,20,15)( 2,19)( 3,17, 5, 8)( 4,11,22, 6)( 7,21)( 9,12,18,14)$ |
4B | $4^{4},2^{2},1^{2}$ | $27720$ | $4$ | $14$ | $( 1,20)( 2,12, 9,17)( 3,15,14,16)( 5, 8)( 7,18,22,13)(10,11,19,21)$ |
5A | $5^{4},1^{2}$ | $88704$ | $5$ | $16$ | $( 1,15,14, 6,11)( 2,20, 8,13, 9)( 3,22,16,10, 5)( 7,12,21,19,17)$ |
6A | $6^{2},3^{2},2^{2}$ | $36960$ | $6$ | $16$ | $( 1, 9, 6,15, 3,18)( 2,20,19, 4,10,17)( 5,22,14)( 7,16)( 8,11,12)(13,21)$ |
7A1 | $7^{3},1$ | $63360$ | $7$ | $18$ | $( 1,18,20, 8,15, 3,21)( 2, 6, 5,10, 7,17, 4)( 9,11,14,13,22,16,19)$ |
7A-1 | $7^{3},1$ | $63360$ | $7$ | $18$ | $( 1,21, 3,15, 8,20,18)( 2, 4,17, 7,10, 5, 6)( 9,19,16,22,13,14,11)$ |
8A | $8^{2},4,2$ | $55440$ | $8$ | $18$ | $( 1, 5,13, 8,20, 3,15,17)( 2, 7,19,21)( 4,14,11, 9,22,12, 6,18)(10,16)$ |
11A1 | $11^{2}$ | $40320$ | $11$ | $20$ | $( 1, 8,20,14,21,18, 6,15,12, 4,17)( 2,11,19,22, 3,10,13, 5, 9, 7,16)$ |
11A-1 | $11^{2}$ | $40320$ | $11$ | $20$ | $( 1,17, 4,12,15, 6,18,21,14,20, 8)( 2,16, 7, 9, 5,13,10, 3,22,19,11)$ |
Malle's constant $a(G)$: $1/8$
Character table
1A | 2A | 3A | 4A | 4B | 5A | 6A | 7A1 | 7A-1 | 8A | 11A1 | 11A-1 | ||
Size | 1 | 1155 | 12320 | 13860 | 27720 | 88704 | 36960 | 63360 | 63360 | 55440 | 40320 | 40320 | |
2 P | 1A | 1A | 3A | 2A | 2A | 5A | 3A | 7A1 | 7A-1 | 4A | 11A-1 | 11A1 | |
3 P | 1A | 2A | 1A | 4A | 4B | 5A | 2A | 7A-1 | 7A1 | 8A | 11A1 | 11A-1 | |
5 P | 1A | 2A | 3A | 4A | 4B | 1A | 6A | 7A-1 | 7A1 | 8A | 11A1 | 11A-1 | |
7 P | 1A | 2A | 3A | 4A | 4B | 5A | 6A | 1A | 1A | 8A | 11A-1 | 11A1 | |
11 P | 1A | 2A | 3A | 4A | 4B | 5A | 6A | 7A1 | 7A-1 | 8A | 1A | 1A | |
Type | |||||||||||||
443520.a.1a | R | ||||||||||||
443520.a.21a | R | ||||||||||||
443520.a.45a1 | C | ||||||||||||
443520.a.45a2 | C | ||||||||||||
443520.a.55a | R | ||||||||||||
443520.a.99a | R | ||||||||||||
443520.a.154a | R | ||||||||||||
443520.a.210a | R | ||||||||||||
443520.a.231a | R | ||||||||||||
443520.a.280a1 | C | ||||||||||||
443520.a.280a2 | C | ||||||||||||
443520.a.385a | R |
Regular extensions
$f_{ 1 } =$ |
$\left(5 x^{4}+34 x^{3}-119 x^{2}+212 x-164\right)^{4} \left(19 x^{3}-12 x^{2}+28 x+32\right)^{2}-2^{22} \left(x^{2}-x+3\right)^{11}/\left(11 t^{2}+1\right)$
|