Show commands:
Magma
magma: G := TransitiveGroup(24, 46);
Group invariants
Abstract group: | $C_2\times S_4$ | magma: IdentifyGroup(G);
| |
Order: | $48=2^{4} \cdot 3$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $24$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $46$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $8$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(5,17)(6,18)(7,8)(9,10)(11,23)(12,24)(19,20)(21,22)$, $(1,3)(2,4)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,15)(14,16)$, $(1,9,18)(2,10,17)(3,11,20)(4,12,19)(5,14,22)(6,13,21)(7,16,24)(8,15,23)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $24$: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_3$, $S_4$, $S_4$, $S_4\times C_2$ x 2
Degree 8: None
Degree 12: $S_4$, $C_2\times S_4$, $C_2 \times S_4$
Low degree siblings
6T11 x 2, 8T24 x 2, 12T21, 12T22, 12T23 x 2, 12T24 x 2, 16T61, 24T47, 24T48 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12}$ | $1$ | $2$ | $12$ | $( 1,14)( 2,13)( 3,16)( 4,15)( 5,18)( 6,17)( 7,20)( 8,19)( 9,22)(10,21)(11,24)(12,23)$ |
2B | $2^{8},1^{8}$ | $3$ | $2$ | $8$ | $( 1, 2)( 3,15)( 4,16)( 9,21)(10,22)(11,12)(13,14)(23,24)$ |
2C | $2^{12}$ | $3$ | $2$ | $12$ | $( 1, 2)( 3,15)( 4,16)( 5,17)( 6,18)( 7, 8)( 9,22)(10,21)(11,24)(12,23)(13,14)(19,20)$ |
2D | $2^{12}$ | $6$ | $2$ | $12$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,24)(10,23)(11,22)(12,21)(13,19)(14,20)(15,17)(16,18)$ |
2E | $2^{12}$ | $6$ | $2$ | $12$ | $( 1,19)( 2,20)( 3, 6)( 4, 5)( 7,13)( 8,14)( 9,24)(10,23)(11,22)(12,21)(15,18)(16,17)$ |
3A | $3^{8}$ | $8$ | $3$ | $16$ | $( 1, 6,10)( 2, 5, 9)( 3,19,23)( 4,20,24)( 7,11,15)( 8,12,16)(13,18,22)(14,17,21)$ |
4A | $4^{6}$ | $6$ | $4$ | $18$ | $( 1, 8, 2, 7)( 3,17,15, 5)( 4,18,16, 6)( 9,12,22,23)(10,11,21,24)(13,20,14,19)$ |
4B | $4^{6}$ | $6$ | $4$ | $18$ | $( 1,20, 2,19)( 3,18,15, 6)( 4,17,16, 5)( 7,13, 8,14)( 9,12,22,23)(10,11,21,24)$ |
6A | $6^{4}$ | $8$ | $6$ | $20$ | $( 1,21, 6,14,10,17)( 2,22, 5,13, 9,18)( 3,12,19,16,23, 8)( 4,11,20,15,24, 7)$ |
Malle's constant $a(G)$: $1/8$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 2C | 2D | 2E | 3A | 4A | 4B | 6A | ||
Size | 1 | 1 | 3 | 3 | 6 | 6 | 8 | 6 | 6 | 8 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 2C | 2C | 3A | |
3 P | 1A | 2A | 2B | 2C | 2D | 2E | 1A | 4A | 4B | 2A | |
Type | |||||||||||
48.48.1a | R | ||||||||||
48.48.1b | R | ||||||||||
48.48.1c | R | ||||||||||
48.48.1d | R | ||||||||||
48.48.2a | R | ||||||||||
48.48.2b | R | ||||||||||
48.48.3a | R | ||||||||||
48.48.3b | R | ||||||||||
48.48.3c | R | ||||||||||
48.48.3d | R |
magma: CharacterTable(G);
Regular extensions
Data not computed