Show commands:
Magma
magma: G := TransitiveGroup(24, 50);
Group invariants
Abstract group: | $C_2^2\times A_4$ | magma: IdentifyGroup(G);
| |
Order: | $48=2^{4} \cdot 3$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $24$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $50$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $8$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,22,18,13,10,6)(2,21,17,14,9,5)(3,23,20,15,11,8)(4,24,19,16,12,7)$, $(1,4,10,23,5,8)(2,3,9,24,6,7)(11,17,20,13,16,22)(12,18,19,14,15,21)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $C_6$ x 3 $12$: $A_4$, $C_6\times C_2$ $24$: $A_4\times C_2$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $C_3$
Degree 4: $C_2^2$
Degree 6: $C_6$ x 3, $A_4$, $A_4\times C_2$ x 3
Degree 8: None
Degree 12: $C_6\times C_2$, $A_4 \times C_2$ x 3, $C_2^2 \times A_4$ x 3
Low degree siblings
12T25 x 3, 12T26 x 2, 16T58, 24T49 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12}$ | $1$ | $2$ | $12$ | $( 1,23)( 2,24)( 3, 6)( 4, 5)( 7, 9)( 8,10)(11,13)(12,14)(15,18)(16,17)(19,21)(20,22)$ |
2B | $2^{12}$ | $1$ | $2$ | $12$ | $( 1,13)( 2,14)( 3,15)( 4,16)( 5,17)( 6,18)( 7,19)( 8,20)( 9,21)(10,22)(11,23)(12,24)$ |
2C | $2^{12}$ | $1$ | $2$ | $12$ | $( 1,11)( 2,12)( 3,18)( 4,17)( 5,16)( 6,15)( 7,21)( 8,22)( 9,19)(10,20)(13,23)(14,24)$ |
2D | $2^{12}$ | $3$ | $2$ | $12$ | $( 1,24)( 2,23)( 3, 5)( 4, 6)( 7,21)( 8,22)( 9,19)(10,20)(11,14)(12,13)(15,17)(16,18)$ |
2E | $2^{8},1^{8}$ | $3$ | $2$ | $8$ | $( 1,14)( 2,13)( 3,16)( 4,15)( 5,18)( 6,17)(11,24)(12,23)$ |
2F | $2^{12}$ | $3$ | $2$ | $12$ | $( 1,12)( 2,11)( 3,17)( 4,18)( 5,15)( 6,16)( 7, 9)( 8,10)(13,24)(14,23)(19,21)(20,22)$ |
2G | $2^{12}$ | $3$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)( 7,19)( 8,20)( 9,21)(10,22)(11,12)(13,14)(15,16)(17,18)(23,24)$ |
3A1 | $3^{8}$ | $4$ | $3$ | $16$ | $( 1,10,18)( 2, 9,17)( 3,11,20)( 4,12,19)( 5,14,21)( 6,13,22)( 7,16,24)( 8,15,23)$ |
3A-1 | $3^{8}$ | $4$ | $3$ | $16$ | $( 1,18,10)( 2,17, 9)( 3,20,11)( 4,19,12)( 5,21,14)( 6,22,13)( 7,24,16)( 8,23,15)$ |
6A1 | $6^{4}$ | $4$ | $6$ | $20$ | $( 1,15,10,23,18, 8)( 2,16, 9,24,17, 7)( 3,22,11, 6,20,13)( 4,21,12, 5,19,14)$ |
6A-1 | $6^{4}$ | $4$ | $6$ | $20$ | $( 1, 8,18,23,10,15)( 2, 7,17,24, 9,16)( 3,13,20, 6,11,22)( 4,14,19, 5,12,21)$ |
6B1 | $6^{4}$ | $4$ | $6$ | $20$ | $( 1,22,18,13,10, 6)( 2,21,17,14, 9, 5)( 3,23,20,15,11, 8)( 4,24,19,16,12, 7)$ |
6B-1 | $6^{4}$ | $4$ | $6$ | $20$ | $( 1, 6,10,13,18,22)( 2, 5, 9,14,17,21)( 3, 8,11,15,20,23)( 4, 7,12,16,19,24)$ |
6C1 | $6^{4}$ | $4$ | $6$ | $20$ | $( 1, 3,10,11,18,20)( 2, 4, 9,12,17,19)( 5, 7,14,16,21,24)( 6, 8,13,15,22,23)$ |
6C-1 | $6^{4}$ | $4$ | $6$ | $20$ | $( 1,20,18,11,10, 3)( 2,19,17,12, 9, 4)( 5,24,21,16,14, 7)( 6,23,22,15,13, 8)$ |
Malle's constant $a(G)$: $1/8$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A1 | 3A-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | ||
Size | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 3A-1 | 3A1 | 3A1 | 3A-1 | |
3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 1A | 1A | 2A | 2A | 2B | 2B | 2C | 2C | |
Type | |||||||||||||||||
48.49.1a | R | ||||||||||||||||
48.49.1b | R | ||||||||||||||||
48.49.1c | R | ||||||||||||||||
48.49.1d | R | ||||||||||||||||
48.49.1e1 | C | ||||||||||||||||
48.49.1e2 | C | ||||||||||||||||
48.49.1f1 | C | ||||||||||||||||
48.49.1f2 | C | ||||||||||||||||
48.49.1g1 | C | ||||||||||||||||
48.49.1g2 | C | ||||||||||||||||
48.49.1h1 | C | ||||||||||||||||
48.49.1h2 | C | ||||||||||||||||
48.49.3a | R | ||||||||||||||||
48.49.3b | R | ||||||||||||||||
48.49.3c | R | ||||||||||||||||
48.49.3d | R |
magma: CharacterTable(G);
Regular extensions
Data not computed