Properties

Label 10080.c.141120.1
Conductor 1008010080
Discriminant 141120141120
Mordell-Weil group Z/2ZZ/4Z\Z/{2}\Z \oplus \Z/{4}\Z
Sato-Tate group SU(2)×SU(2)\mathrm{SU}(2)\times\mathrm{SU}(2)
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R R×R\R \times \R
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q Q×Q\Q \times \Q
End(J)Q\End(J) \otimes \Q Q×Q\Q \times \Q
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

y2+(x3+x)y=x6+35x4560x2+2940y^2 + (x^3 + x)y = -x^6 + 35x^4 - 560x^2 + 2940 (homogenize, simplify)
y2+(x3+xz2)y=x6+35x4z2560x2z4+2940z6y^2 + (x^3 + xz^2)y = -x^6 + 35x^4z^2 - 560x^2z^4 + 2940z^6 (dehomogenize, simplify)
y2=3x6+142x42239x2+11760y^2 = -3x^6 + 142x^4 - 2239x^2 + 11760 (homogenize, minimize)

Copy content sage:R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([2940, 0, -560, 0, 35, 0, -1]), R([0, 1, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![2940, 0, -560, 0, 35, 0, -1], R![0, 1, 0, 1]);
 
Copy content sage:X = HyperellipticCurve(R([11760, 0, -2239, 0, 142, 0, -3]))
 
Copy content magma:X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: N N  ==  1008010080 == 253257 2^{5} \cdot 3^{2} \cdot 5 \cdot 7
Copy content magma:Conductor(LSeries(C)); Factorization($1);
 
Discriminant: Δ \Delta  ==  141120141120 == 2632572 2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2}
Copy content magma:Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

I2 I_2  == 33885523388552 ==  23467907 2^{3} \cdot 467 \cdot 907
I4 I_4  == 174712174712 ==  2321839 2^{3} \cdot 21839
I6 I_6  == 197326050612197326050612 ==  223227271326701 2^{2} \cdot 3 \cdot 227 \cdot 2713 \cdot 26701
I10 I_{10}  == 564480564480 ==  2832572 2^{8} \cdot 3^{2} \cdot 5 \cdot 7^{2}
J2 J_2  == 16942761694276 ==  22467907 2^{2} \cdot 467 \cdot 907
J4 J_4  == 119607102722119607102722 ==  2236211418637 2 \cdot 23 \cdot 6211 \cdot 418637
J6 J_6  == 1125818582942592011258185829425920 ==  2832572111813122589 2^{8} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \cdot 1813122589
J8 J_8  == 11921537581963425561591192153758196342556159 ==  16192861902767285096503 1619 \cdot 2861 \cdot 902767 \cdot 285096503
J10 J_{10}  == 141120141120 ==  2632572 2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2}
g1 g_1  == 218142768611210403574323981584/2205218142768611210403574323981584/2205
g2 g_2  == 9089279812657801356650662498/22059089279812657801356650662498/2205
g3 g_3  == 229006686528379459553216229006686528379459553216

Copy content sage:C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
Copy content magma:IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

Aut(X)\mathrm{Aut}(X)\simeq C22C_2^2
Copy content magma:AutomorphismGroup(C); IdentifyGroup($1);
 
Aut(XQ)\mathrm{Aut}(X_{\overline{\Q}})\simeq C22C_2^2
Copy content magma:AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: (4:34:1),(4:34:1)(-4 : 34 : 1),\, (4 : -34 : 1)
All points: (4:34:1),(4:34:1)(-4 : 34 : 1),\, (4 : -34 : 1)
All points: (4:0:1),(4:0:1)(-4 : 0 : 1),\, (4 : 0 : 1)

Copy content magma:[C![-4,34,1],C![4,-34,1]]; // minimal model
 
Copy content magma:[C![-4,0,1],C![4,0,1]]; // simplified model
 

Number of rational Weierstrass points: 22

Copy content magma:#Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

Copy content magma:f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: Z/2ZZ/4Z\Z/{2}\Z \oplus \Z/{4}\Z

Copy content magma:MordellWeilGroupGenus2(Jacobian(C));
 

Generator D0D_0 Height Order
(4:34:1)+(4:34:1)D(-4 : 34 : 1) + (4 : -34 : 1) - D_\infty (x4z)(x+4z)(x - 4z) (x + 4z) == 0,0, 2y2y == 17xz2-17xz^2 00 22
D0DD_0 - D_\infty 13x2210z213x^2 - 210z^2 == 0,0, 13y13y == 111xz2-111xz^2 00 44
Generator D0D_0 Height Order
(4:34:1)+(4:34:1)D(-4 : 34 : 1) + (4 : -34 : 1) - D_\infty (x4z)(x+4z)(x - 4z) (x + 4z) == 0,0, 2y2y == 17xz2-17xz^2 00 22
D0DD_0 - D_\infty 13x2210z213x^2 - 210z^2 == 0,0, 13y13y == 111xz2-111xz^2 00 44
Generator D0D_0 Height Order
D0DD_0 - D_\infty (x4z)(x+4z)(x - 4z) (x + 4z) == 0,0, 2y2y == x333xz2x^3 - 33xz^2 00 22
D0DD_0 - D_\infty 13x2210z213x^2 - 210z^2 == 0,0, 13y13y == x3221xz2x^3 - 221xz^2 00 44

2-torsion field: Q(3,5)\Q(\sqrt{3}, \sqrt{5})

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: 00
Mordell-Weil rank: 00
2-Selmer rank:44
Regulator: 1 1
Real period: 5.655296 5.655296
Tamagawa product: 4 4
Torsion order:8 8
Leading coefficient: 1.413824 1.413824
Analytic order of Ш: 4 4   (rounded)
Order of Ш:square

Local invariants

Prime ord(NN) ord(Δ\Delta) Tamagawa Root number* L-factor Cluster picture Tame reduction?
22 55 66 22 1-1^* 1T1 - T no
33 22 22 11 1-1 (1T)(1+T)( 1 - T )( 1 + T ) yes
55 11 11 11 1-1 (1T)(1+2T+5T2)( 1 - T )( 1 + 2 T + 5 T^{2} ) yes
77 11 22 22 1-1 (1T)(1+7T2)( 1 - T )( 1 + 7 T^{2} ) yes

Galois representations

For primes 5\ell \ge 5 the Galois representation data has not been computed for this curve since it is not generic.

For primes 3\ell \le 3, the image of the mod-\ell Galois representation is listed in the table below, whenever it is not all of GSp(4,F)\GSp(4,\F_\ell).

Prime \ell mod-\ell image Is torsion prime?
22 2.180.3 yes
33 3.90.1 no

Sato-Tate group

ST\mathrm{ST}\simeq SU(2)×SU(2)\mathrm{SU}(2)\times\mathrm{SU}(2)
ST0\mathrm{ST}^0\simeq SU(2)×SU(2)\mathrm{SU}(2)\times\mathrm{SU}(2)

Decomposition of the Jacobian

Splits over Q\Q

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 210.c
  Elliptic curve isogeny class 48.a

Copy content magma:HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of GL2\GL_2-type over Q\Q

Endomorphism ring over Q\Q:

End(J)\End (J_{})\simeqan order of index 22 in Z×Z\Z \times \Z
End(J)Q\End (J_{}) \otimes \Q \simeqQ\Q ×\times Q\Q
End(J)R\End (J_{}) \otimes \R\simeq R×R\R \times \R

All Q\overline{\Q}-endomorphisms of the Jacobian are defined over Q\Q.

Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

Copy content magma:HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

Copy content magma:HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);