y 2 + ( x 3 + x ) y = − x 6 + 35 x 4 − 560 x 2 + 2940 y^2 + (x^3 + x)y = -x^6 + 35x^4 - 560x^2 + 2940 y 2 + ( x 3 + x ) y = − x 6 + 3 5 x 4 − 5 6 0 x 2 + 2 9 4 0
(homogenize , simplify )
y 2 + ( x 3 + x z 2 ) y = − x 6 + 35 x 4 z 2 − 560 x 2 z 4 + 2940 z 6 y^2 + (x^3 + xz^2)y = -x^6 + 35x^4z^2 - 560x^2z^4 + 2940z^6 y 2 + ( x 3 + x z 2 ) y = − x 6 + 3 5 x 4 z 2 − 5 6 0 x 2 z 4 + 2 9 4 0 z 6
(dehomogenize , simplify )
y 2 = − 3 x 6 + 142 x 4 − 2239 x 2 + 11760 y^2 = -3x^6 + 142x^4 - 2239x^2 + 11760 y 2 = − 3 x 6 + 1 4 2 x 4 − 2 2 3 9 x 2 + 1 1 7 6 0
(homogenize , minimize )
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([2940, 0, -560, 0, 35, 0, -1]), R([0, 1, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![2940, 0, -560, 0, 35, 0, -1], R![0, 1, 0, 1]);
sage: X = HyperellipticCurve(R([11760, 0, -2239, 0, 142, 0, -3]))
magma: X,pi:= SimplifiedModel(C);
Conductor : N N N = = = 10080 10080 1 0 0 8 0 = = = 2 5 ⋅ 3 2 ⋅ 5 ⋅ 7 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 2 5 ⋅ 3 2 ⋅ 5 ⋅ 7
magma: Conductor(LSeries(C)); Factorization($1);
Discriminant : Δ \Delta Δ = = = 141120 141120 1 4 1 1 2 0 = = = 2 6 ⋅ 3 2 ⋅ 5 ⋅ 7 2 2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2} 2 6 ⋅ 3 2 ⋅ 5 ⋅ 7 2
magma: Discriminant(C); Factorization(Integers()!$1);
I 2 I_2 I 2 = = = 3388552 3388552 3 3 8 8 5 5 2 = = =
2 3 ⋅ 467 ⋅ 907 2^{3} \cdot 467 \cdot 907 2 3 ⋅ 4 6 7 ⋅ 9 0 7
I 4 I_4 I 4 = = = 174712 174712 1 7 4 7 1 2 = = =
2 3 ⋅ 21839 2^{3} \cdot 21839 2 3 ⋅ 2 1 8 3 9
I 6 I_6 I 6 = = = 197326050612 197326050612 1 9 7 3 2 6 0 5 0 6 1 2 = = =
2 2 ⋅ 3 ⋅ 227 ⋅ 2713 ⋅ 26701 2^{2} \cdot 3 \cdot 227 \cdot 2713 \cdot 26701 2 2 ⋅ 3 ⋅ 2 2 7 ⋅ 2 7 1 3 ⋅ 2 6 7 0 1
I 10 I_{10} I 1 0 = = = 564480 564480 5 6 4 4 8 0 = = =
2 8 ⋅ 3 2 ⋅ 5 ⋅ 7 2 2^{8} \cdot 3^{2} \cdot 5 \cdot 7^{2} 2 8 ⋅ 3 2 ⋅ 5 ⋅ 7 2
J 2 J_2 J 2 = = = 1694276 1694276 1 6 9 4 2 7 6 = = =
2 2 ⋅ 467 ⋅ 907 2^{2} \cdot 467 \cdot 907 2 2 ⋅ 4 6 7 ⋅ 9 0 7
J 4 J_4 J 4 = = = 119607102722 119607102722 1 1 9 6 0 7 1 0 2 7 2 2 = = =
2 ⋅ 23 ⋅ 6211 ⋅ 418637 2 \cdot 23 \cdot 6211 \cdot 418637 2 ⋅ 2 3 ⋅ 6 2 1 1 ⋅ 4 1 8 6 3 7
J 6 J_6 J 6 = = = 11258185829425920 11258185829425920 1 1 2 5 8 1 8 5 8 2 9 4 2 5 9 2 0 = = =
2 8 ⋅ 3 2 ⋅ 5 ⋅ 7 2 ⋅ 11 ⋅ 1813122589 2^{8} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \cdot 1813122589 2 8 ⋅ 3 2 ⋅ 5 ⋅ 7 2 ⋅ 1 1 ⋅ 1 8 1 3 1 2 2 5 8 9
J 8 J_8 J 8 = = = 1192153758196342556159 1192153758196342556159 1 1 9 2 1 5 3 7 5 8 1 9 6 3 4 2 5 5 6 1 5 9 = = =
1619 ⋅ 2861 ⋅ 902767 ⋅ 285096503 1619 \cdot 2861 \cdot 902767 \cdot 285096503 1 6 1 9 ⋅ 2 8 6 1 ⋅ 9 0 2 7 6 7 ⋅ 2 8 5 0 9 6 5 0 3
J 10 J_{10} J 1 0 = = = 141120 141120 1 4 1 1 2 0 = = =
2 6 ⋅ 3 2 ⋅ 5 ⋅ 7 2 2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2} 2 6 ⋅ 3 2 ⋅ 5 ⋅ 7 2
g 1 g_1 g 1 = = = 218142768611210403574323981584 / 2205 218142768611210403574323981584/2205 2 1 8 1 4 2 7 6 8 6 1 1 2 1 0 4 0 3 5 7 4 3 2 3 9 8 1 5 8 4 / 2 2 0 5
g 2 g_2 g 2 = = = 9089279812657801356650662498 / 2205 9089279812657801356650662498/2205 9 0 8 9 2 7 9 8 1 2 6 5 7 8 0 1 3 5 6 6 5 0 6 6 2 4 9 8 / 2 2 0 5
g 3 g_3 g 3 = = = 229006686528379459553216 229006686528379459553216 2 2 9 0 0 6 6 8 6 5 2 8 3 7 9 4 5 9 5 5 3 2 1 6
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
A u t ( X ) \mathrm{Aut}(X) A u t ( X ) ≃ \simeq ≃
C 2 2 C_2^2 C 2 2
magma: AutomorphismGroup(C); IdentifyGroup($1);
A u t ( X Q ‾ ) \mathrm{Aut}(X_{\overline{\Q}}) A u t ( X Q ) ≃ \simeq ≃
C 2 2 C_2^2 C 2 2
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
All points :
( − 4 : 34 : 1 ) , ( 4 : − 34 : 1 ) (-4 : 34 : 1),\, (4 : -34 : 1) ( − 4 : 3 4 : 1 ) , ( 4 : − 3 4 : 1 )
All points :
( − 4 : 34 : 1 ) , ( 4 : − 34 : 1 ) (-4 : 34 : 1),\, (4 : -34 : 1) ( − 4 : 3 4 : 1 ) , ( 4 : − 3 4 : 1 )
All points :
( − 4 : 0 : 1 ) , ( 4 : 0 : 1 ) (-4 : 0 : 1),\, (4 : 0 : 1) ( − 4 : 0 : 1 ) , ( 4 : 0 : 1 )
magma: [C![-4,34,1],C![4,-34,1]]; // minimal model
magma: [C![-4,0,1],C![4,0,1]]; // simplified model
Number of rational Weierstrass points : 2 2 2
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Group structure : Z / 2 Z ⊕ Z / 4 Z \Z/{2}\Z \oplus \Z/{4}\Z Z / 2 Z ⊕ Z / 4 Z
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator
D 0 D_0 D 0
Height
Order
( − 4 : 34 : 1 ) + ( 4 : − 34 : 1 ) − D ∞ (-4 : 34 : 1) + (4 : -34 : 1) - D_\infty ( − 4 : 3 4 : 1 ) + ( 4 : − 3 4 : 1 ) − D ∞
( x − 4 z ) ( x + 4 z ) (x - 4z) (x + 4z) ( x − 4 z ) ( x + 4 z )
= = =
0 , 0, 0 ,
2 y 2y 2 y
= = =
− 17 x z 2 -17xz^2 − 1 7 x z 2
0 0 0
2 2 2
D 0 − D ∞ D_0 - D_\infty D 0 − D ∞
13 x 2 − 210 z 2 13x^2 - 210z^2 1 3 x 2 − 2 1 0 z 2
= = =
0 , 0, 0 ,
13 y 13y 1 3 y
= = =
− 111 x z 2 -111xz^2 − 1 1 1 x z 2
0 0 0
4 4 4
Generator
D 0 D_0 D 0
Height
Order
( − 4 : 34 : 1 ) + ( 4 : − 34 : 1 ) − D ∞ (-4 : 34 : 1) + (4 : -34 : 1) - D_\infty ( − 4 : 3 4 : 1 ) + ( 4 : − 3 4 : 1 ) − D ∞
( x − 4 z ) ( x + 4 z ) (x - 4z) (x + 4z) ( x − 4 z ) ( x + 4 z )
= = =
0 , 0, 0 ,
2 y 2y 2 y
= = =
− 17 x z 2 -17xz^2 − 1 7 x z 2
0 0 0
2 2 2
D 0 − D ∞ D_0 - D_\infty D 0 − D ∞
13 x 2 − 210 z 2 13x^2 - 210z^2 1 3 x 2 − 2 1 0 z 2
= = =
0 , 0, 0 ,
13 y 13y 1 3 y
= = =
− 111 x z 2 -111xz^2 − 1 1 1 x z 2
0 0 0
4 4 4
Generator
D 0 D_0 D 0
Height
Order
D 0 − D ∞ D_0 - D_\infty D 0 − D ∞
( x − 4 z ) ( x + 4 z ) (x - 4z) (x + 4z) ( x − 4 z ) ( x + 4 z )
= = =
0 , 0, 0 ,
2 y 2y 2 y
= = =
x 3 − 33 x z 2 x^3 - 33xz^2 x 3 − 3 3 x z 2
0 0 0
2 2 2
D 0 − D ∞ D_0 - D_\infty D 0 − D ∞
13 x 2 − 210 z 2 13x^2 - 210z^2 1 3 x 2 − 2 1 0 z 2
= = =
0 , 0, 0 ,
13 y 13y 1 3 y
= = =
x 3 − 221 x z 2 x^3 - 221xz^2 x 3 − 2 2 1 x z 2
0 0 0
4 4 4
2-torsion field : Q ( 3 , 5 ) \Q(\sqrt{3}, \sqrt{5}) Q ( 3 , 5 )
For primes ℓ ≥ 5 \ell \ge 5 ℓ ≥ 5 the Galois representation data has not been computed for this curve since it is not generic.
For primes ℓ ≤ 3 \ell \le 3 ℓ ≤ 3 , the image of the mod-ℓ \ell ℓ Galois representation is listed in the table below, whenever it is not all of GSp ( 4 , F ℓ ) \GSp(4,\F_\ell) GSp ( 4 , F ℓ ) .
Splits over Q \Q Q
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes: Elliptic curve isogeny class 210.c Elliptic curve isogeny class 48.a
magma: HeuristicDecompositionFactors(C);
Of GL 2 \GL_2 GL 2 -type over Q \Q Q
Endomorphism ring over Q \Q Q :
End ( J ) \End (J_{}) E n d ( J ) ≃ \simeq ≃ an order of index 2 2 2 in Z × Z \Z \times \Z Z × Z End ( J ) ⊗ Q \End (J_{}) \otimes \Q E n d ( J ) ⊗ Q ≃ \simeq ≃ Q \Q Q × \times × Q \Q Q End ( J ) ⊗ R \End (J_{}) \otimes \R E n d ( J ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
All Q ‾ \overline{\Q} Q -endomorphisms of the Jacobian are defined over Q \Q Q .
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);