Properties

Label 13689.a.13689.1
Conductor 1368913689
Discriminant 1368913689
Mordell-Weil group ZZ\Z \oplus \Z
Sato-Tate group E6E_6
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(R)\mathrm{M}_2(\R)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
End(J)Q\End(J) \otimes \Q CM\mathsf{CM}
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

y2+(x3+x+1)y=x5x44x32x2y^2 + (x^3 + x + 1)y = x^5 - x^4 - 4x^3 - 2x^2 (homogenize, simplify)
y2+(x3+xz2+z3)y=x5zx4z24x3z32x2z4y^2 + (x^3 + xz^2 + z^3)y = x^5z - x^4z^2 - 4x^3z^3 - 2x^2z^4 (dehomogenize, simplify)
y2=x6+4x52x414x37x2+2x+1y^2 = x^6 + 4x^5 - 2x^4 - 14x^3 - 7x^2 + 2x + 1 (homogenize, minimize)

Copy content sage:R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, -2, -4, -1, 1]), R([1, 1, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, -2, -4, -1, 1], R![1, 1, 0, 1]);
 
Copy content sage:X = HyperellipticCurve(R([1, 2, -7, -14, -2, 4, 1]))
 
Copy content magma:X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: N N  ==  1368913689 == 34132 3^{4} \cdot 13^{2}
Copy content magma:Conductor(LSeries(C)); Factorization($1);
 
Discriminant: Δ \Delta  ==  1368913689 == 34132 3^{4} \cdot 13^{2}
Copy content magma:Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

I2 I_2  == 516516 ==  22343 2^{2} \cdot 3 \cdot 43
I4 I_4  == 80738073 ==  331323 3^{3} \cdot 13 \cdot 23
I6 I_6  == 12506131250613 ==  33713509 3^{3} \cdot 7 \cdot 13 \cdot 509
I10 I_{10}  == 17521921752192 ==  2734132 2^{7} \cdot 3^{4} \cdot 13^{2}
J2 J_2  == 129129 ==  343 3 \cdot 43
J4 J_4  == 357357 ==  3717 3 \cdot 7 \cdot 17
J6 J_6  == 347-347 ==  347 -347
J8 J_8  == 43053-43053 ==  3113127 - 3 \cdot 113 \cdot 127
J10 J_{10}  == 1368913689 ==  34132 3^{4} \cdot 13^{2}
g1 g_1  == 441025329/169441025329/169
g2 g_2  == 9461333/1699461333/169
g3 g_3  == 641603/1521-641603/1521

Copy content sage:C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
Copy content magma:IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

Aut(X)\mathrm{Aut}(X)\simeq C6C_6
Copy content magma:AutomorphismGroup(C); IdentifyGroup($1);
 
Aut(XQ)\mathrm{Aut}(X_{\overline{\Q}})\simeq D6D_6
Copy content magma:AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
(1:0:0)(1 : 0 : 0) (1:1:0)(1 : -1 : 0) (0:0:1)(0 : 0 : 1) (1:0:1)(-1 : 0 : 1) (0:1:1)(0 : -1 : 1) (1:1:1)(-1 : 1 : 1)
(2:3:1)(2 : -3 : 1) (1:6:3)(-1 : -6 : 3) (2:8:1)(2 : -8 : 1) (1:11:3)(-1 : -11 : 3) (3:13:2)(-3 : 13 : 2) (3:18:2)(-3 : 18 : 2)
Known points
(1:0:0)(1 : 0 : 0) (1:1:0)(1 : -1 : 0) (0:0:1)(0 : 0 : 1) (1:0:1)(-1 : 0 : 1) (0:1:1)(0 : -1 : 1) (1:1:1)(-1 : 1 : 1)
(2:3:1)(2 : -3 : 1) (1:6:3)(-1 : -6 : 3) (2:8:1)(2 : -8 : 1) (1:11:3)(-1 : -11 : 3) (3:13:2)(-3 : 13 : 2) (3:18:2)(-3 : 18 : 2)
Known points
(1:1:0)(1 : -1 : 0) (1:1:0)(1 : 1 : 0) (0:1:1)(0 : -1 : 1) (0:1:1)(0 : 1 : 1) (1:1:1)(-1 : -1 : 1) (1:1:1)(-1 : 1 : 1)
(2:5:1)(2 : -5 : 1) (2:5:1)(2 : 5 : 1) (1:5:3)(-1 : -5 : 3) (1:5:3)(-1 : 5 : 3) (3:5:2)(-3 : -5 : 2) (3:5:2)(-3 : 5 : 2)

Copy content magma:[C![-3,13,2],C![-3,18,2],C![-1,-11,3],C![-1,-6,3],C![-1,0,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-1,0],C![1,0,0],C![2,-8,1],C![2,-3,1]]; // minimal model
 
Copy content magma:[C![-3,-5,2],C![-3,5,2],C![-1,-5,3],C![-1,5,3],C![-1,-1,1],C![-1,1,1],C![0,-1,1],C![0,1,1],C![1,-1,0],C![1,1,0],C![2,-5,1],C![2,5,1]]; // simplified model
 

Number of rational Weierstrass points: 00

Copy content magma:#Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

Copy content magma:f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: ZZ\Z \oplus \Z

Copy content magma:MordellWeilGroupGenus2(Jacobian(C));
 

Generator D0D_0 Height Order
(1:0:1)+(0:0:1)(1:1:0)(1:0:0)(-1 : 0 : 1) + (0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0) x(x+z)x (x + z) == 0,0, yy == 00 0.1509030.150903 \infty
(0:1:1)(1:1:0)(0 : -1 : 1) - (1 : -1 : 0) zxz x == 0,0, yy == z3-z^3 0.1509030.150903 \infty
Generator D0D_0 Height Order
(1:0:1)+(0:0:1)(1:1:0)(1:0:0)(-1 : 0 : 1) + (0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0) x(x+z)x (x + z) == 0,0, yy == 00 0.1509030.150903 \infty
(0:1:1)(1:1:0)(0 : -1 : 1) - (1 : -1 : 0) zxz x == 0,0, yy == z3-z^3 0.1509030.150903 \infty
Generator D0D_0 Height Order
(1:1:1)+(0:1:1)(1:1:0)(1:1:0)(-1 : -1 : 1) + (0 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0) x(x+z)x (x + z) == 0,0, yy == x3+xz2+z3x^3 + xz^2 + z^3 0.1509030.150903 \infty
(0:1:1)(1:1:0)(0 : -1 : 1) - (1 : -1 : 0) zxz x == 0,0, yy == x3+xz2z3x^3 + xz^2 - z^3 0.1509030.150903 \infty

2-torsion field: 9.9.2565164201769.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: 22
Mordell-Weil rank: 22
2-Selmer rank:22
Regulator: 0.017078 0.017078
Real period: 22.36905 22.36905
Tamagawa product: 1 1
Torsion order:1 1
Leading coefficient: 0.382038 0.382038
Analytic order of Ш: 1 1   (rounded)
Order of Ш:square

Local invariants

Prime ord(NN) ord(Δ\Delta) Tamagawa Root number* L-factor Cluster picture Tame reduction?
33 44 44 11 11^* 1+3T+3T21 + 3 T + 3 T^{2} no
1313 22 22 11 11 1+5T+13T21 + 5 T + 13 T^{2} yes

Galois representations

For primes 5\ell \ge 5 the Galois representation data has not been computed for this curve since it is not generic.

For primes 3\ell \le 3, the image of the mod-\ell Galois representation is listed in the table below, whenever it is not all of GSp(4,F)\GSp(4,\F_\ell).

Prime \ell mod-\ell image Is torsion prime?
22 2.80.1 no
33 3.480.12 no

Sato-Tate group

ST\mathrm{ST}\simeq E6E_6
ST0\mathrm{ST}^0\simeq SU(2)\mathrm{SU}(2)

Decomposition of the Jacobian

Splits over the number field Q(b)\Q (b) \simeq 6.6.2436053373.2 with defining polynomial:
  x639x426x3+351x2+585x+117x^{6} - 39 x^{4} - 26 x^{3} + 351 x^{2} + 585 x + 117

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  y2=x3g4/48xg6/864y^2 = x^3 - g_4 / 48 x - g_6 / 864 with
  g4=120157653956b5+23393623515824b4+73521758715824b3232650112515824b2240909201688b2887841973956g_4 = -\frac{12015765}{3956} b^{5} + \frac{233936235}{15824} b^{4} + \frac{735217587}{15824} b^{3} - \frac{2326501125}{15824} b^{2} - \frac{240909201}{688} b - \frac{288784197}{3956}
  g6=366854512053956b5285870928554963296b4896898031321563296b3+2842066757123163296b2+29395064915192752b+1410075739624563296g_6 = \frac{36685451205}{3956} b^{5} - \frac{2858709285549}{63296} b^{4} - \frac{8968980313215}{63296} b^{3} + \frac{28420667571231}{63296} b^{2} + \frac{2939506491519}{2752} b + \frac{14100757396245}{63296}
   Conductor norm: 1

Copy content magma:HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of GL2\GL_2-type over Q\Q

Endomorphism ring over Q\Q:

End(J)\End (J_{})\simeqZ[1+32]\Z [\frac{1 + \sqrt{-3}}{2}]
End(J)Q\End (J_{}) \otimes \Q \simeqQ(3)\Q(\sqrt{-3})
End(J)R\End (J_{}) \otimes \R\simeq C\C

Smallest field over which all endomorphisms are defined:
Galois number field K=Q(a)K = \Q (a) \simeq 6.6.2436053373.2 with defining polynomial x639x426x3+351x2+585x+117x^{6} - 39 x^{4} - 26 x^{3} + 351 x^{2} + 585 x + 117

Not of GL2\GL_2-type over Q\overline{\Q}

Endomorphism ring over Q\overline{\Q}:

End(JQ)\End (J_{\overline{\Q}})\simeqan Eichler order of index 33 in a maximal order of End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q
End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q \simeqM2(\mathrm{M}_2(Q\Q))
End(JQ)R\End (J_{\overline{\Q}}) \otimes \R\simeq M2(R)\mathrm{M}_2 (\R)

Remainder of the endomorphism lattice by field

Over subfield FF \simeq Q(13)\Q(\sqrt{13}) with generator 9989a512989a4+335989a3+351989a211743a1930989-\frac{9}{989} a^{5} - \frac{12}{989} a^{4} + \frac{335}{989} a^{3} + \frac{351}{989} a^{2} - \frac{117}{43} a - \frac{1930}{989} with minimal polynomial x2x3x^{2} - x - 3:

End(JF)\End (J_{F})\simeqZ[1+32]\Z [\frac{1 + \sqrt{-3}}{2}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(3)\Q(\sqrt{-3})
End(JF)R\End (J_{F}) \otimes \R\simeq C\C
  Sato Tate group: E3E_3
  Of GL2\GL_2-type, simple

Over subfield FF \simeq 3.3.13689.2 with generator 4129a5343a45643a3+145129a2+58543a+44243\frac{4}{129} a^{5} - \frac{3}{43} a^{4} - \frac{56}{43} a^{3} + \frac{145}{129} a^{2} + \frac{585}{43} a + \frac{442}{43} with minimal polynomial x339x91x^{3} - 39 x - 91:

End(JF)\End (J_{F})\simeqZ[1+32]\Z [\frac{1 + \sqrt{-3}}{2}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(3)\Q(\sqrt{-3})
End(JF)R\End (J_{F}) \otimes \R\simeq C\C
  Sato Tate group: E2E_2
  Of GL2\GL_2-type, simple

Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

Copy content magma:HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

Copy content magma:HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);