Properties

Label 36864.b.36864.1
Conductor 3686436864
Discriminant 3686436864
Mordell-Weil group ZZ/2Z\Z \oplus \Z/{2}\Z
Sato-Tate group J(E1)J(E_1)
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(R)\mathrm{M}_2(\R)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
End(J)Q\End(J) \otimes \Q Q×Q\Q \times \Q
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

y2=x5x3+xy^2 = x^5 - x^3 + x (homogenize, simplify)
y2=x5zx3z3+xz5y^2 = x^5z - x^3z^3 + xz^5 (dehomogenize, simplify)
y2=x5x3+xy^2 = x^5 - x^3 + x (homogenize, minimize)

Copy content sage:R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, 0, -1, 0, 1]), R([]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, 0, -1, 0, 1], R![]);
 
Copy content sage:X = HyperellipticCurve(R([0, 1, 0, -1, 0, 1]))
 
Copy content magma:X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: N N  ==  3686436864 == 21232 2^{12} \cdot 3^{2}
Copy content magma:Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(36864,2),R![1]>*])); Factorization($1);
 
Discriminant: Δ \Delta  ==  3686436864 == 21232 2^{12} \cdot 3^{2}
Copy content magma:Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

I2 I_2  == 4646 ==  223 2 \cdot 23
I4 I_4  == 44-44 ==  2211 - 2^{2} \cdot 11
I6 I_6  == 72-72 ==  2332 - 2^{3} \cdot 3^{2}
I10 I_{10}  == 144144 ==  2432 2^{4} \cdot 3^{2}
J2 J_2  == 9292 ==  2223 2^{2} \cdot 23
J4 J_4  == 470470 ==  2547 2 \cdot 5 \cdot 47
J6 J_6  == 684-684 ==  223219 - 2^{2} \cdot 3^{2} \cdot 19
J8 J_8  == 70957-70957 ==  70957 -70957
J10 J_{10}  == 3686436864 ==  21232 2^{12} \cdot 3^{2}
g1 g_1  == 6436343/366436343/36
g2 g_2  == 2859245/2882859245/288
g3 g_3  == 10051/64-10051/64

Copy content sage:C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
Copy content magma:IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

Aut(X)\mathrm{Aut}(X)\simeq C22C_2^2
Copy content magma:AutomorphismGroup(C); IdentifyGroup($1);
 
Aut(XQ)\mathrm{Aut}(X_{\overline{\Q}})\simeq D4D_4
Copy content magma:AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: (1:0:0),(0:0:1),(1:1:1),(1:1:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1),\, (1 : 1 : 1)
All points: (1:0:0),(0:0:1),(1:1:1),(1:1:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1),\, (1 : 1 : 1)
All points: (1:0:0),(0:0:1),(1:1/2:1),(1:1/2:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1/2 : 1),\, (1 : 1/2 : 1)

Copy content magma:[C![0,0,1],C![1,-1,1],C![1,0,0],C![1,1,1]]; // minimal model
 
Copy content magma:[C![0,0,1],C![1,-1/2,1],C![1,0,0],C![1,1/2,1]]; // simplified model
 

Number of rational Weierstrass points: 22

Copy content magma:#Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

Copy content magma:f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: ZZ/2Z\Z \oplus \Z/{2}\Z

Copy content magma:MordellWeilGroupGenus2(Jacobian(C));
 

Generator D0D_0 Height Order
(1:1:1)(1:0:0)(1 : -1 : 1) - (1 : 0 : 0) xzx - z == 0,0, yy == z3-z^3 0.6758010.675801 \infty
(0:0:1)(1:0:0)(0 : 0 : 1) - (1 : 0 : 0) xx == 0,0, yy == 00 00 22
Generator D0D_0 Height Order
(1:1:1)(1:0:0)(1 : -1 : 1) - (1 : 0 : 0) xzx - z == 0,0, yy == z3-z^3 0.6758010.675801 \infty
(0:0:1)(1:0:0)(0 : 0 : 1) - (1 : 0 : 0) xx == 0,0, yy == 00 00 22
Generator D0D_0 Height Order
(1:1/2:1)(1:0:0)(1 : -1/2 : 1) - (1 : 0 : 0) xzx - z == 0,0, yy == 1/2z3-1/2z^3 0.6758010.675801 \infty
(0:0:1)(1:0:0)(0 : 0 : 1) - (1 : 0 : 0) xx == 0,0, yy == 00 00 22

2-torsion field: Q(ζ12)\Q(\zeta_{12})

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: 11
Mordell-Weil rank: 11
2-Selmer rank:22
Regulator: 0.675801 0.675801
Real period: 9.381457 9.381457
Tamagawa product: 1 1
Torsion order:2 2
Leading coefficient: 1.585001 1.585001
Analytic order of Ш: 1 1   (rounded)
Order of Ш:square

Local invariants

Prime ord(NN) ord(Δ\Delta) Tamagawa Root number* L-factor Cluster picture Tame reduction?
22 1212 1212 11 11^* 11 no
33 22 22 11 1-1 (1T)(1+T)( 1 - T )( 1 + T ) yes

Galois representations

For primes 5\ell \ge 5 the Galois representation data has not been computed for this curve since it is not generic.

For primes 3\ell \le 3, the image of the mod-\ell Galois representation is listed in the table below, whenever it is not all of GSp(4,F)\GSp(4,\F_\ell).

Prime \ell mod-\ell image Is torsion prime?
22 2.180.5 yes
33 3.1080.10 no

Sato-Tate group

ST\mathrm{ST}\simeq J(E1)J(E_1)
ST0\mathrm{ST}^0\simeq SU(2)\mathrm{SU}(2)

Decomposition of the Jacobian

Splits over Q\Q

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 192.c
  Elliptic curve isogeny class 192.a

Copy content magma:HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of GL2\GL_2-type over Q\Q

Endomorphism ring over Q\Q:

End(J)\End (J_{})\simeqan order of index 22 in Z×Z\Z \times \Z
End(J)Q\End (J_{}) \otimes \Q \simeqQ\Q ×\times Q\Q
End(J)R\End (J_{}) \otimes \R\simeq R×R\R \times \R

Smallest field over which all endomorphisms are defined:
Galois number field K=Q(a)K = \Q (a) \simeq Q(1)\Q(\sqrt{-1}) with defining polynomial x2+1x^{2} + 1

Not of GL2\GL_2-type over Q\overline{\Q}

Endomorphism ring over Q\overline{\Q}:

End(JQ)\End (J_{\overline{\Q}})\simeqa non-Eichler order of index 44 in a maximal order of End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q
End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q \simeqM2(\mathrm{M}_2(Q\Q))
End(JQ)R\End (J_{\overline{\Q}}) \otimes \R\simeq M2(R)\mathrm{M}_2 (\R)

Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

Copy content magma:HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

Copy content magma:HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);