sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, 0, -1, 0, 1]), R([]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, 0, -1, 0, 1], R![]);
sage: X = HyperellipticCurve(R([0, 1, 0, -1, 0, 1]))
magma: X,pi:= SimplifiedModel(C);
Conductor : N N N = = = 36864 36864 3 6 8 6 4 = = = 2 12 ⋅ 3 2 2^{12} \cdot 3^{2} 2 1 2 ⋅ 3 2
magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(36864,2),R![1]>*])); Factorization($1);
Discriminant : Δ \Delta Δ = = = 36864 36864 3 6 8 6 4 = = = 2 12 ⋅ 3 2 2^{12} \cdot 3^{2} 2 1 2 ⋅ 3 2
magma: Discriminant(C); Factorization(Integers()!$1);
I 2 I_2 I 2 = = = 46 46 4 6 = = =
2 ⋅ 23 2 \cdot 23 2 ⋅ 2 3
I 4 I_4 I 4 = = = − 44 -44 − 4 4 = = =
− 2 2 ⋅ 11 - 2^{2} \cdot 11 − 2 2 ⋅ 1 1
I 6 I_6 I 6 = = = − 72 -72 − 7 2 = = =
− 2 3 ⋅ 3 2 - 2^{3} \cdot 3^{2} − 2 3 ⋅ 3 2
I 10 I_{10} I 1 0 = = = 144 144 1 4 4 = = =
2 4 ⋅ 3 2 2^{4} \cdot 3^{2} 2 4 ⋅ 3 2
J 2 J_2 J 2 = = = 92 92 9 2 = = =
2 2 ⋅ 23 2^{2} \cdot 23 2 2 ⋅ 2 3
J 4 J_4 J 4 = = = 470 470 4 7 0 = = =
2 ⋅ 5 ⋅ 47 2 \cdot 5 \cdot 47 2 ⋅ 5 ⋅ 4 7
J 6 J_6 J 6 = = = − 684 -684 − 6 8 4 = = =
− 2 2 ⋅ 3 2 ⋅ 19 - 2^{2} \cdot 3^{2} \cdot 19 − 2 2 ⋅ 3 2 ⋅ 1 9
J 8 J_8 J 8 = = = − 70957 -70957 − 7 0 9 5 7 = = =
− 70957 -70957 − 7 0 9 5 7
J 10 J_{10} J 1 0 = = = 36864 36864 3 6 8 6 4 = = =
2 12 ⋅ 3 2 2^{12} \cdot 3^{2} 2 1 2 ⋅ 3 2
g 1 g_1 g 1 = = = 6436343 / 36 6436343/36 6 4 3 6 3 4 3 / 3 6
g 2 g_2 g 2 = = = 2859245 / 288 2859245/288 2 8 5 9 2 4 5 / 2 8 8
g 3 g_3 g 3 = = = − 10051 / 64 -10051/64 − 1 0 0 5 1 / 6 4
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
A u t ( X ) \mathrm{Aut}(X) A u t ( X ) ≃ \simeq ≃
C 2 2 C_2^2 C 2 2
magma: AutomorphismGroup(C); IdentifyGroup($1);
A u t ( X Q ‾ ) \mathrm{Aut}(X_{\overline{\Q}}) A u t ( X Q ) ≃ \simeq ≃
D 4 D_4 D 4
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( 1 : − 1 : 1 ) , ( 1 : 1 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1),\, (1 : 1 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( 1 : − 1 : 1 ) , ( 1 : 1 : 1 )
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( 1 : − 1 : 1 ) , ( 1 : 1 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1),\, (1 : 1 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( 1 : − 1 : 1 ) , ( 1 : 1 : 1 )
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( 1 : − 1 / 2 : 1 ) , ( 1 : 1 / 2 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1/2 : 1),\, (1 : 1/2 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( 1 : − 1 / 2 : 1 ) , ( 1 : 1 / 2 : 1 )
magma: [C![0,0,1],C![1,-1,1],C![1,0,0],C![1,1,1]]; // minimal model
magma: [C![0,0,1],C![1,-1/2,1],C![1,0,0],C![1,1/2,1]]; // simplified model
Number of rational Weierstrass points : 2 2 2
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Group structure : Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator
D 0 D_0 D 0
Height
Order
( 1 : − 1 : 1 ) − ( 1 : 0 : 0 ) (1 : -1 : 1) - (1 : 0 : 0) ( 1 : − 1 : 1 ) − ( 1 : 0 : 0 )
x − z x - z x − z
= = =
0 , 0, 0 ,
y y y
= = =
− z 3 -z^3 − z 3
0.675801 0.675801 0 . 6 7 5 8 0 1
∞ \infty ∞
( 0 : 0 : 1 ) − ( 1 : 0 : 0 ) (0 : 0 : 1) - (1 : 0 : 0) ( 0 : 0 : 1 ) − ( 1 : 0 : 0 )
x x x
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
Generator
D 0 D_0 D 0
Height
Order
( 1 : − 1 : 1 ) − ( 1 : 0 : 0 ) (1 : -1 : 1) - (1 : 0 : 0) ( 1 : − 1 : 1 ) − ( 1 : 0 : 0 )
x − z x - z x − z
= = =
0 , 0, 0 ,
y y y
= = =
− z 3 -z^3 − z 3
0.675801 0.675801 0 . 6 7 5 8 0 1
∞ \infty ∞
( 0 : 0 : 1 ) − ( 1 : 0 : 0 ) (0 : 0 : 1) - (1 : 0 : 0) ( 0 : 0 : 1 ) − ( 1 : 0 : 0 )
x x x
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
Generator
D 0 D_0 D 0
Height
Order
( 1 : − 1 / 2 : 1 ) − ( 1 : 0 : 0 ) (1 : -1/2 : 1) - (1 : 0 : 0) ( 1 : − 1 / 2 : 1 ) − ( 1 : 0 : 0 )
x − z x - z x − z
= = =
0 , 0, 0 ,
y y y
= = =
− 1 / 2 z 3 -1/2z^3 − 1 / 2 z 3
0.675801 0.675801 0 . 6 7 5 8 0 1
∞ \infty ∞
( 0 : 0 : 1 ) − ( 1 : 0 : 0 ) (0 : 0 : 1) - (1 : 0 : 0) ( 0 : 0 : 1 ) − ( 1 : 0 : 0 )
x x x
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
2-torsion field : Q ( ζ 12 ) \Q(\zeta_{12}) Q ( ζ 1 2 )
For primes ℓ ≥ 5 \ell \ge 5 ℓ ≥ 5 the Galois representation data has not been computed for this curve since it is not generic.
For primes ℓ ≤ 3 \ell \le 3 ℓ ≤ 3 , the image of the mod-ℓ \ell ℓ Galois representation is listed in the table below, whenever it is not all of GSp ( 4 , F ℓ ) \GSp(4,\F_\ell) GSp ( 4 , F ℓ ) .
S T \mathrm{ST} S T ≃ \simeq ≃ J ( E 1 ) J(E_1) J ( E 1 )
S T 0 \mathrm{ST}^0 S T 0 ≃ \simeq ≃ S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Splits over Q \Q Q
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes: Elliptic curve isogeny class 192.c Elliptic curve isogeny class 192.a
magma: HeuristicDecompositionFactors(C);
Of GL 2 \GL_2 GL 2 -type over Q \Q Q
Endomorphism ring over Q \Q Q :
End ( J ) \End (J_{}) E n d ( J ) ≃ \simeq ≃ an order of index 2 2 2 in Z × Z \Z \times \Z Z × Z End ( J ) ⊗ Q \End (J_{}) \otimes \Q E n d ( J ) ⊗ Q ≃ \simeq ≃ Q \Q Q × \times × Q \Q Q End ( J ) ⊗ R \End (J_{}) \otimes \R E n d ( J ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Smallest field over which all endomorphisms are defined:
Galois number field K = Q ( a ) ≃ K = \Q (a) \simeq K = Q ( a ) ≃ Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 ) with defining polynomial x 2 + 1 x^{2} + 1 x 2 + 1
Not of GL 2 \GL_2 GL 2 -type over Q ‾ \overline{\Q} Q
Endomorphism ring over Q ‾ \overline{\Q} Q :
End ( J Q ‾ ) \End (J_{\overline{\Q}}) E n d ( J Q ) ≃ \simeq ≃ a non-Eichler order of index 4 4 4 in a maximal order of End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q ≃ \simeq ≃ M 2 ( \mathrm{M}_2( M 2 ( Q \Q Q ) ) ) End ( J Q ‾ ) ⊗ R \End (J_{\overline{\Q}}) \otimes \R E n d ( J Q ) ⊗ R ≃ \simeq ≃ M 2 ( R ) \mathrm{M}_2 (\R) M 2 ( R )
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);