y 2 + ( x 2 + x ) y = x 5 − 5 x 4 + 4 x 3 − x y^2 + (x^2 + x)y = x^5 - 5x^4 + 4x^3 - x y 2 + ( x 2 + x ) y = x 5 − 5 x 4 + 4 x 3 − x
(homogenize , simplify )
y 2 + ( x 2 z + x z 2 ) y = x 5 z − 5 x 4 z 2 + 4 x 3 z 3 − x z 5 y^2 + (x^2z + xz^2)y = x^5z - 5x^4z^2 + 4x^3z^3 - xz^5 y 2 + ( x 2 z + x z 2 ) y = x 5 z − 5 x 4 z 2 + 4 x 3 z 3 − x z 5
(dehomogenize , simplify )
y 2 = 4 x 5 − 19 x 4 + 18 x 3 + x 2 − 4 x y^2 = 4x^5 - 19x^4 + 18x^3 + x^2 - 4x y 2 = 4 x 5 − 1 9 x 4 + 1 8 x 3 + x 2 − 4 x
(homogenize , minimize )
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 0, 4, -5, 1]), R([0, 1, 1]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 0, 4, -5, 1], R![0, 1, 1]);
sage: X = HyperellipticCurve(R([0, -4, 1, 18, -19, 4]))
magma: X,pi:= SimplifiedModel(C);
Conductor : N N N = = = 3969 3969 3 9 6 9 = = = 3 4 ⋅ 7 2 3^{4} \cdot 7^{2} 3 4 ⋅ 7 2
magma: Conductor(LSeries(C)); Factorization($1);
Discriminant : Δ \Delta Δ = = = 35721 35721 3 5 7 2 1 = = = 3 6 ⋅ 7 2 3^{6} \cdot 7^{2} 3 6 ⋅ 7 2
magma: Discriminant(C); Factorization(Integers()!$1);
I 2 I_2 I 2 = = = 268 268 2 6 8 = = =
2 2 ⋅ 67 2^{2} \cdot 67 2 2 ⋅ 6 7
I 4 I_4 I 4 = = = 2961 2961 2 9 6 1 = = =
3 2 ⋅ 7 ⋅ 47 3^{2} \cdot 7 \cdot 47 3 2 ⋅ 7 ⋅ 4 7
I 6 I_6 I 6 = = = 216951 216951 2 1 6 9 5 1 = = =
3 ⋅ 7 ⋅ 10331 3 \cdot 7 \cdot 10331 3 ⋅ 7 ⋅ 1 0 3 3 1
I 10 I_{10} I 1 0 = = = 18816 18816 1 8 8 1 6 = = =
2 7 ⋅ 3 ⋅ 7 2 2^{7} \cdot 3 \cdot 7^{2} 2 7 ⋅ 3 ⋅ 7 2
J 2 J_2 J 2 = = = 201 201 2 0 1 = = =
3 ⋅ 67 3 \cdot 67 3 ⋅ 6 7
J 4 J_4 J 4 = = = 573 573 5 7 3 = = =
3 ⋅ 191 3 \cdot 191 3 ⋅ 1 9 1
J 6 J_6 J 6 = = = − 563 -563 − 5 6 3 = = =
− 563 -563 − 5 6 3
J 8 J_8 J 8 = = = − 110373 -110373 − 1 1 0 3 7 3 = = =
− 3 ⋅ 36791 - 3 \cdot 36791 − 3 ⋅ 3 6 7 9 1
J 10 J_{10} J 1 0 = = = 35721 35721 3 5 7 2 1 = = =
3 6 ⋅ 7 2 3^{6} \cdot 7^{2} 3 6 ⋅ 7 2
g 1 g_1 g 1 = = = 1350125107 / 147 1350125107/147 1 3 5 0 1 2 5 1 0 7 / 1 4 7
g 2 g_2 g 2 = = = 57445733 / 441 57445733/441 5 7 4 4 5 7 3 3 / 4 4 1
g 3 g_3 g 3 = = = − 2527307 / 3969 -2527307/3969 − 2 5 2 7 3 0 7 / 3 9 6 9
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
A u t ( X ) \mathrm{Aut}(X) A u t ( X ) ≃ \simeq ≃
C 6 C_6 C 6
magma: AutomorphismGroup(C); IdentifyGroup($1);
A u t ( X Q ‾ ) \mathrm{Aut}(X_{\overline{\Q}}) A u t ( X Q ) ≃ \simeq ≃
D 6 D_6 D 6
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( 1 : − 1 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( 1 : − 1 : 1 )
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( 1 : − 1 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( 1 : − 1 : 1 )
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( 1 : 0 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1),\, (1 : 0 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( 1 : 0 : 1 )
magma: [C![0,0,1],C![1,-1,1],C![1,0,0]]; // minimal model
magma: [C![0,0,1],C![1,0,1],C![1,0,0]]; // simplified model
Number of rational Weierstrass points : 3 3 3
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Group structure : Z / 2 Z ⊕ Z / 2 Z \Z/{2}\Z \oplus \Z/{2}\Z Z / 2 Z ⊕ Z / 2 Z
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator
D 0 D_0 D 0
Height
Order
( 1 : − 1 : 1 ) − ( 1 : 0 : 0 ) (1 : -1 : 1) - (1 : 0 : 0) ( 1 : − 1 : 1 ) − ( 1 : 0 : 0 )
x − z x - z x − z
= = =
0 , 0, 0 ,
y y y
= = =
− z 3 -z^3 − z 3
0 0 0
2 2 2
( 0 : 0 : 1 ) + ( 1 : − 1 : 1 ) − 2 ⋅ ( 1 : 0 : 0 ) (0 : 0 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0) ( 0 : 0 : 1 ) + ( 1 : − 1 : 1 ) − 2 ⋅ ( 1 : 0 : 0 )
x ( x − z ) x (x - z) x ( x − z )
= = =
0 , 0, 0 ,
y y y
= = =
− x z 2 -xz^2 − x z 2
0 0 0
2 2 2
Generator
D 0 D_0 D 0
Height
Order
( 1 : − 1 : 1 ) − ( 1 : 0 : 0 ) (1 : -1 : 1) - (1 : 0 : 0) ( 1 : − 1 : 1 ) − ( 1 : 0 : 0 )
x − z x - z x − z
= = =
0 , 0, 0 ,
y y y
= = =
− z 3 -z^3 − z 3
0 0 0
2 2 2
( 0 : 0 : 1 ) + ( 1 : − 1 : 1 ) − 2 ⋅ ( 1 : 0 : 0 ) (0 : 0 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0) ( 0 : 0 : 1 ) + ( 1 : − 1 : 1 ) − 2 ⋅ ( 1 : 0 : 0 )
x ( x − z ) x (x - z) x ( x − z )
= = =
0 , 0, 0 ,
y y y
= = =
− x z 2 -xz^2 − x z 2
0 0 0
2 2 2
Generator
D 0 D_0 D 0
Height
Order
( 1 : 0 : 1 ) − ( 1 : 0 : 0 ) (1 : 0 : 1) - (1 : 0 : 0) ( 1 : 0 : 1 ) − ( 1 : 0 : 0 )
x − z x - z x − z
= = =
0 , 0, 0 ,
y y y
= = =
x 2 z + x z 2 − 2 z 3 x^2z + xz^2 - 2z^3 x 2 z + x z 2 − 2 z 3
0 0 0
2 2 2
( 0 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 ) (0 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) ( 0 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 )
x ( x − z ) x (x - z) x ( x − z )
= = =
0 , 0, 0 ,
y y y
= = =
x 2 z − x z 2 x^2z - xz^2 x 2 z − x z 2
0 0 0
2 2 2
2-torsion field : 3.3.3969.1
For primes ℓ ≥ 5 \ell \ge 5 ℓ ≥ 5 the Galois representation data has not been computed for this curve since it is not generic.
For primes ℓ ≤ 3 \ell \le 3 ℓ ≤ 3 , the image of the mod-ℓ \ell ℓ Galois representation is listed in the table below, whenever it is not all of GSp ( 4 , F ℓ ) \GSp(4,\F_\ell) GSp ( 4 , F ℓ ) .
S T \mathrm{ST} S T ≃ \simeq ≃ E 6 E_6 E 6
S T 0 \mathrm{ST}^0 S T 0 ≃ \simeq ≃ S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Splits over the number field Q ( b ) ≃ \Q (b) \simeq Q ( b ) ≃ 6.6.330812181.2 with defining polynomial: x 6 − 21 x 4 − 14 x 3 + 63 x 2 + 84 x + 28 x^{6} - 21 x^{4} - 14 x^{3} + 63 x^{2} + 84 x + 28 x 6 − 2 1 x 4 − 1 4 x 3 + 6 3 x 2 + 8 4 x + 2 8
Decomposes up to isogeny as the square of the elliptic curve isogeny class: y 2 = x 3 − g 4 / 48 x − g 6 / 864 y^2 = x^3 - g_4 / 48 x - g_6 / 864 y 2 = x 3 − g 4 / 4 8 x − g 6 / 8 6 4 with g 4 = − 171315 2048 b 5 − 209223 1024 b 4 + 2733507 2048 b 3 + 1175391 256 b 2 + 9537507 2048 b + 1587033 1024 g_4 = -\frac{171315}{2048} b^{5} - \frac{209223}{1024} b^{4} + \frac{2733507}{2048} b^{3} + \frac{1175391}{256} b^{2} + \frac{9537507}{2048} b + \frac{1587033}{1024} g 4 = − 2 0 4 8 1 7 1 3 1 5 b 5 − 1 0 2 4 2 0 9 2 2 3 b 4 + 2 0 4 8 2 7 3 3 5 0 7 b 3 + 2 5 6 1 1 7 5 3 9 1 b 2 + 2 0 4 8 9 5 3 7 5 0 7 b + 1 0 2 4 1 5 8 7 0 3 3 g 6 = 55433889 4096 b 5 + 120007251 4096 b 4 − 900796869 4096 b 3 − 2712953817 4096 b 2 − 2417459499 4096 b − 689012163 4096 g_6 = \frac{55433889}{4096} b^{5} + \frac{120007251}{4096} b^{4} - \frac{900796869}{4096} b^{3} - \frac{2712953817}{4096} b^{2} - \frac{2417459499}{4096} b - \frac{689012163}{4096} g 6 = 4 0 9 6 5 5 4 3 3 8 8 9 b 5 + 4 0 9 6 1 2 0 0 0 7 2 5 1 b 4 − 4 0 9 6 9 0 0 7 9 6 8 6 9 b 3 − 4 0 9 6 2 7 1 2 9 5 3 8 1 7 b 2 − 4 0 9 6 2 4 1 7 4 5 9 4 9 9 b − 4 0 9 6 6 8 9 0 1 2 1 6 3 Conductor norm: 1
magma: HeuristicDecompositionFactors(C);
Of GL 2 \GL_2 GL 2 -type over Q \Q Q
Endomorphism ring over Q \Q Q :
End ( J ) \End (J_{}) E n d ( J ) ≃ \simeq ≃ Z [ 1 + − 3 2 ] \Z [\frac{1 + \sqrt{-3}}{2}] Z [ 2 1 + − 3 ] End ( J ) ⊗ Q \End (J_{}) \otimes \Q E n d ( J ) ⊗ Q ≃ \simeq ≃ Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 ) End ( J ) ⊗ R \End (J_{}) \otimes \R E n d ( J ) ⊗ R ≃ \simeq ≃ C \C C
Smallest field over which all endomorphisms are defined:
Galois number field K = Q ( a ) ≃ K = \Q (a) \simeq K = Q ( a ) ≃ 6.6.330812181.2 with defining polynomial x 6 − 21 x 4 − 14 x 3 + 63 x 2 + 84 x + 28 x^{6} - 21 x^{4} - 14 x^{3} + 63 x^{2} + 84 x + 28 x 6 − 2 1 x 4 − 1 4 x 3 + 6 3 x 2 + 8 4 x + 2 8
Not of GL 2 \GL_2 GL 2 -type over Q ‾ \overline{\Q} Q
Endomorphism ring over Q ‾ \overline{\Q} Q :
End ( J Q ‾ ) \End (J_{\overline{\Q}}) E n d ( J Q ) ≃ \simeq ≃ an Eichler order of index 3 3 3 in a maximal order of End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q ≃ \simeq ≃ M 2 ( \mathrm{M}_2( M 2 ( Q \Q Q ) ) ) End ( J Q ‾ ) ⊗ R \End (J_{\overline{\Q}}) \otimes \R E n d ( J Q ) ⊗ R ≃ \simeq ≃ M 2 ( R ) \mathrm{M}_2 (\R) M 2 ( R )
Over subfield F ≃ F \simeq F ≃ Q ( 21 ) \Q(\sqrt{21}) Q ( 2 1 ) with generator − 9 8 a 5 + 3 4 a 4 + 185 8 a 3 − 567 8 a − 173 4 -\frac{9}{8} a^{5} + \frac{3}{4} a^{4} + \frac{185}{8} a^{3} - \frac{567}{8} a - \frac{173}{4} − 8 9 a 5 + 4 3 a 4 + 8 1 8 5 a 3 − 8 5 6 7 a − 4 1 7 3 with minimal polynomial x 2 − x − 5 x^{2} - x - 5 x 2 − x − 5 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ 1 + − 3 2 ] \Z [\frac{1 + \sqrt{-3}}{2}] Z [ 2 1 + − 3 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ C \C C
Sato Tate group:
E 3 E_3 E 3 Of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ 3.3.3969.1 with generator a 5 − a 4 − 20 a 3 + 6 a 2 + 56 a + 28 a^{5} - a^{4} - 20 a^{3} + 6 a^{2} + 56 a + 28 a 5 − a 4 − 2 0 a 3 + 6 a 2 + 5 6 a + 2 8 with minimal polynomial x 3 − 21 x − 28 x^{3} - 21 x - 28 x 3 − 2 1 x − 2 8 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ 1 + − 3 2 ] \Z [\frac{1 + \sqrt{-3}}{2}] Z [ 2 1 + − 3 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ C \C C
Sato Tate group:
E 2 E_2 E 2 Of
GL 2 \GL_2 GL 2 -type, simple
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);