Properties

Label 3969.c.35721.1
Conductor 39693969
Discriminant 3572135721
Mordell-Weil group Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z
Sato-Tate group E6E_6
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(R)\mathrm{M}_2(\R)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
End(J)Q\End(J) \otimes \Q CM\mathsf{CM}
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

y2+(x2+x)y=x55x4+4x3xy^2 + (x^2 + x)y = x^5 - 5x^4 + 4x^3 - x (homogenize, simplify)
y2+(x2z+xz2)y=x5z5x4z2+4x3z3xz5y^2 + (x^2z + xz^2)y = x^5z - 5x^4z^2 + 4x^3z^3 - xz^5 (dehomogenize, simplify)
y2=4x519x4+18x3+x24xy^2 = 4x^5 - 19x^4 + 18x^3 + x^2 - 4x (homogenize, minimize)

Copy content sage:R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 0, 4, -5, 1]), R([0, 1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 0, 4, -5, 1], R![0, 1, 1]);
 
Copy content sage:X = HyperellipticCurve(R([0, -4, 1, 18, -19, 4]))
 
Copy content magma:X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: N N  ==  39693969 == 3472 3^{4} \cdot 7^{2}
Copy content magma:Conductor(LSeries(C)); Factorization($1);
 
Discriminant: Δ \Delta  ==  3572135721 == 3672 3^{6} \cdot 7^{2}
Copy content magma:Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

I2 I_2  == 268268 ==  2267 2^{2} \cdot 67
I4 I_4  == 29612961 ==  32747 3^{2} \cdot 7 \cdot 47
I6 I_6  == 216951216951 ==  3710331 3 \cdot 7 \cdot 10331
I10 I_{10}  == 1881618816 ==  27372 2^{7} \cdot 3 \cdot 7^{2}
J2 J_2  == 201201 ==  367 3 \cdot 67
J4 J_4  == 573573 ==  3191 3 \cdot 191
J6 J_6  == 563-563 ==  563 -563
J8 J_8  == 110373-110373 ==  336791 - 3 \cdot 36791
J10 J_{10}  == 3572135721 ==  3672 3^{6} \cdot 7^{2}
g1 g_1  == 1350125107/1471350125107/147
g2 g_2  == 57445733/44157445733/441
g3 g_3  == 2527307/3969-2527307/3969

Copy content sage:C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
Copy content magma:IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

Aut(X)\mathrm{Aut}(X)\simeq C6C_6
Copy content magma:AutomorphismGroup(C); IdentifyGroup($1);
 
Aut(XQ)\mathrm{Aut}(X_{\overline{\Q}})\simeq D6D_6
Copy content magma:AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: (1:0:0),(0:0:1),(1:1:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1)
All points: (1:0:0),(0:0:1),(1:1:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1)
All points: (1:0:0),(0:0:1),(1:0:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (1 : 0 : 1)

Copy content magma:[C![0,0,1],C![1,-1,1],C![1,0,0]]; // minimal model
 
Copy content magma:[C![0,0,1],C![1,0,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: 33

Copy content magma:#Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

Copy content magma:f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Copy content magma:MordellWeilGroupGenus2(Jacobian(C));
 

Generator D0D_0 Height Order
(1:1:1)(1:0:0)(1 : -1 : 1) - (1 : 0 : 0) xzx - z == 0,0, yy == z3-z^3 00 22
(0:0:1)+(1:1:1)2(1:0:0)(0 : 0 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0) x(xz)x (x - z) == 0,0, yy == xz2-xz^2 00 22
Generator D0D_0 Height Order
(1:1:1)(1:0:0)(1 : -1 : 1) - (1 : 0 : 0) xzx - z == 0,0, yy == z3-z^3 00 22
(0:0:1)+(1:1:1)2(1:0:0)(0 : 0 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0) x(xz)x (x - z) == 0,0, yy == xz2-xz^2 00 22
Generator D0D_0 Height Order
(1:0:1)(1:0:0)(1 : 0 : 1) - (1 : 0 : 0) xzx - z == 0,0, yy == x2z+xz22z3x^2z + xz^2 - 2z^3 00 22
(0:0:1)+(1:0:1)2(1:0:0)(0 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) x(xz)x (x - z) == 0,0, yy == x2zxz2x^2z - xz^2 00 22

2-torsion field: 3.3.3969.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: 00
Mordell-Weil rank: 00
2-Selmer rank:22
Regulator: 1 1
Real period: 12.48506 12.48506
Tamagawa product: 1 1
Torsion order:4 4
Leading coefficient: 0.780316 0.780316
Analytic order of Ш: 1 1   (rounded)
Order of Ш:square

Local invariants

Prime ord(NN) ord(Δ\Delta) Tamagawa Root number* L-factor Cluster picture Tame reduction?
33 44 66 11 1-1^* 1+3T21 + 3 T^{2} no
77 22 22 11 1-1 14T+7T21 - 4 T + 7 T^{2} yes

Galois representations

For primes 5\ell \ge 5 the Galois representation data has not been computed for this curve since it is not generic.

For primes 3\ell \le 3, the image of the mod-\ell Galois representation is listed in the table below, whenever it is not all of GSp(4,F)\GSp(4,\F_\ell).

Prime \ell mod-\ell image Is torsion prime?
22 2.240.1 yes
33 3.480.12 no

Sato-Tate group

ST\mathrm{ST}\simeq E6E_6
ST0\mathrm{ST}^0\simeq SU(2)\mathrm{SU}(2)

Decomposition of the Jacobian

Splits over the number field Q(b)\Q (b) \simeq 6.6.330812181.2 with defining polynomial:
  x621x414x3+63x2+84x+28x^{6} - 21 x^{4} - 14 x^{3} + 63 x^{2} + 84 x + 28

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  y2=x3g4/48xg6/864y^2 = x^3 - g_4 / 48 x - g_6 / 864 with
  g4=1713152048b52092231024b4+27335072048b3+1175391256b2+95375072048b+15870331024g_4 = -\frac{171315}{2048} b^{5} - \frac{209223}{1024} b^{4} + \frac{2733507}{2048} b^{3} + \frac{1175391}{256} b^{2} + \frac{9537507}{2048} b + \frac{1587033}{1024}
  g6=554338894096b5+1200072514096b49007968694096b327129538174096b224174594994096b6890121634096g_6 = \frac{55433889}{4096} b^{5} + \frac{120007251}{4096} b^{4} - \frac{900796869}{4096} b^{3} - \frac{2712953817}{4096} b^{2} - \frac{2417459499}{4096} b - \frac{689012163}{4096}
   Conductor norm: 1

Copy content magma:HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of GL2\GL_2-type over Q\Q

Endomorphism ring over Q\Q:

End(J)\End (J_{})\simeqZ[1+32]\Z [\frac{1 + \sqrt{-3}}{2}]
End(J)Q\End (J_{}) \otimes \Q \simeqQ(3)\Q(\sqrt{-3})
End(J)R\End (J_{}) \otimes \R\simeq C\C

Smallest field over which all endomorphisms are defined:
Galois number field K=Q(a)K = \Q (a) \simeq 6.6.330812181.2 with defining polynomial x621x414x3+63x2+84x+28x^{6} - 21 x^{4} - 14 x^{3} + 63 x^{2} + 84 x + 28

Not of GL2\GL_2-type over Q\overline{\Q}

Endomorphism ring over Q\overline{\Q}:

End(JQ)\End (J_{\overline{\Q}})\simeqan Eichler order of index 33 in a maximal order of End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q
End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q \simeqM2(\mathrm{M}_2(Q\Q))
End(JQ)R\End (J_{\overline{\Q}}) \otimes \R\simeq M2(R)\mathrm{M}_2 (\R)

Remainder of the endomorphism lattice by field

Over subfield FF \simeq Q(21)\Q(\sqrt{21}) with generator 98a5+34a4+1858a35678a1734-\frac{9}{8} a^{5} + \frac{3}{4} a^{4} + \frac{185}{8} a^{3} - \frac{567}{8} a - \frac{173}{4} with minimal polynomial x2x5x^{2} - x - 5:

End(JF)\End (J_{F})\simeqZ[1+32]\Z [\frac{1 + \sqrt{-3}}{2}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(3)\Q(\sqrt{-3})
End(JF)R\End (J_{F}) \otimes \R\simeq C\C
  Sato Tate group: E3E_3
  Of GL2\GL_2-type, simple

Over subfield FF \simeq 3.3.3969.1 with generator a5a420a3+6a2+56a+28a^{5} - a^{4} - 20 a^{3} + 6 a^{2} + 56 a + 28 with minimal polynomial x321x28x^{3} - 21 x - 28:

End(JF)\End (J_{F})\simeqZ[1+32]\Z [\frac{1 + \sqrt{-3}}{2}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(3)\Q(\sqrt{-3})
End(JF)R\End (J_{F}) \otimes \R\simeq C\C
  Sato Tate group: E2E_2
  Of GL2\GL_2-type, simple

Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

Copy content magma:HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

Copy content magma:HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);