sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 1, 0, -1, 1]), R([]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 1, 0, -1, 1], R![]);
sage: X = HyperellipticCurve(R([0, -1, 1, 0, -1, 1]))
magma: X,pi:= SimplifiedModel(C);
Conductor : N N N = = = 4608 4608 4 6 0 8 = = = 2 9 ⋅ 3 2 2^{9} \cdot 3^{2} 2 9 ⋅ 3 2
magma: Conductor(LSeries(C)); Factorization($1);
Discriminant : Δ \Delta Δ = = = − 27648 -27648 − 2 7 6 4 8 = = = − 2 10 ⋅ 3 3 - 2^{10} \cdot 3^{3} − 2 1 0 ⋅ 3 3
magma: Discriminant(C); Factorization(Integers()!$1);
I 2 I_2 I 2 = = = 24 24 2 4 = = =
2 3 ⋅ 3 2^{3} \cdot 3 2 3 ⋅ 3
I 4 I_4 I 4 = = = − 72 -72 − 7 2 = = =
− 2 3 ⋅ 3 2 - 2^{3} \cdot 3^{2} − 2 3 ⋅ 3 2
I 6 I_6 I 6 = = = − 180 -180 − 1 8 0 = = =
− 2 2 ⋅ 3 2 ⋅ 5 - 2^{2} \cdot 3^{2} \cdot 5 − 2 2 ⋅ 3 2 ⋅ 5
I 10 I_{10} I 1 0 = = = 108 108 1 0 8 = = =
2 2 ⋅ 3 3 2^{2} \cdot 3^{3} 2 2 ⋅ 3 3
J 2 J_2 J 2 = = = 48 48 4 8 = = =
2 4 ⋅ 3 2^{4} \cdot 3 2 4 ⋅ 3
J 4 J_4 J 4 = = = 288 288 2 8 8 = = =
2 5 ⋅ 3 2 2^{5} \cdot 3^{2} 2 5 ⋅ 3 2
J 6 J_6 J 6 = = = − 1024 -1024 − 1 0 2 4 = = =
− 2 10 - 2^{10} − 2 1 0
J 8 J_8 J 8 = = = − 33024 -33024 − 3 3 0 2 4 = = =
− 2 8 ⋅ 3 ⋅ 43 - 2^{8} \cdot 3 \cdot 43 − 2 8 ⋅ 3 ⋅ 4 3
J 10 J_{10} J 1 0 = = = 27648 27648 2 7 6 4 8 = = =
2 10 ⋅ 3 3 2^{10} \cdot 3^{3} 2 1 0 ⋅ 3 3
g 1 g_1 g 1 = = = 9216 9216 9 2 1 6
g 2 g_2 g 2 = = = 1152 1152 1 1 5 2
g 3 g_3 g 3 = = = − 256 / 3 -256/3 − 2 5 6 / 3
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
A u t ( X ) \mathrm{Aut}(X) A u t ( X ) ≃ \simeq ≃
C 2 C_2 C 2
magma: AutomorphismGroup(C); IdentifyGroup($1);
A u t ( X Q ‾ ) \mathrm{Aut}(X_{\overline{\Q}}) A u t ( X Q ) ≃ \simeq ≃
D 4 D_4 D 4
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : 0 : 1 ) , ( 1 : 0 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : 0 : 1 ) , ( 1 : 0 : 1 )
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : 0 : 1 ) , ( 1 : 0 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : 0 : 1 ) , ( 1 : 0 : 1 )
All points :
( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : 0 : 1 ) , ( 1 : 0 : 1 ) (1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1) ( 1 : 0 : 0 ) , ( 0 : 0 : 1 ) , ( − 1 : 0 : 1 ) , ( 1 : 0 : 1 )
magma: [C![-1,0,1],C![0,0,1],C![1,0,0],C![1,0,1]]; // minimal model
magma: [C![-1,0,1],C![0,0,1],C![1,0,0],C![1,0,1]]; // simplified model
Number of rational Weierstrass points : 4 4 4
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Group structure : Z / 2 Z ⊕ Z / 2 Z ⊕ Z / 2 Z \Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z Z / 2 Z ⊕ Z / 2 Z ⊕ Z / 2 Z
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator
D 0 D_0 D 0
Height
Order
( 0 : 0 : 1 ) − ( 1 : 0 : 0 ) (0 : 0 : 1) - (1 : 0 : 0) ( 0 : 0 : 1 ) − ( 1 : 0 : 0 )
x x x
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
( − 1 : 0 : 1 ) − ( 1 : 0 : 0 ) (-1 : 0 : 1) - (1 : 0 : 0) ( − 1 : 0 : 1 ) − ( 1 : 0 : 0 )
x + z x + z x + z
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
( − 1 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 ) (-1 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) ( − 1 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 )
( x − z ) ( x + z ) (x - z) (x + z) ( x − z ) ( x + z )
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
Generator
D 0 D_0 D 0
Height
Order
( 0 : 0 : 1 ) − ( 1 : 0 : 0 ) (0 : 0 : 1) - (1 : 0 : 0) ( 0 : 0 : 1 ) − ( 1 : 0 : 0 )
x x x
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
( − 1 : 0 : 1 ) − ( 1 : 0 : 0 ) (-1 : 0 : 1) - (1 : 0 : 0) ( − 1 : 0 : 1 ) − ( 1 : 0 : 0 )
x + z x + z x + z
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
( − 1 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 ) (-1 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) ( − 1 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 )
( x − z ) ( x + z ) (x - z) (x + z) ( x − z ) ( x + z )
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
Generator
D 0 D_0 D 0
Height
Order
( 0 : 0 : 1 ) − ( 1 : 0 : 0 ) (0 : 0 : 1) - (1 : 0 : 0) ( 0 : 0 : 1 ) − ( 1 : 0 : 0 )
x x x
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
( − 1 : 0 : 1 ) − ( 1 : 0 : 0 ) (-1 : 0 : 1) - (1 : 0 : 0) ( − 1 : 0 : 1 ) − ( 1 : 0 : 0 )
x + z x + z x + z
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
( − 1 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 ) (-1 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) ( − 1 : 0 : 1 ) + ( 1 : 0 : 1 ) − 2 ⋅ ( 1 : 0 : 0 )
( x − z ) ( x + z ) (x - z) (x + z) ( x − z ) ( x + z )
= = =
0 , 0, 0 ,
y y y
= = =
0 0 0
0 0 0
2 2 2
2-torsion field : Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 )
For primes ℓ ≥ 5 \ell \ge 5 ℓ ≥ 5 the Galois representation data has not been computed for this curve since it is not generic.
For primes ℓ ≤ 3 \ell \le 3 ℓ ≤ 3 , the image of the mod-ℓ \ell ℓ Galois representation is listed in the table below, whenever it is not all of GSp ( 4 , F ℓ ) \GSp(4,\F_\ell) GSp ( 4 , F ℓ ) .
S T \mathrm{ST} S T ≃ \simeq ≃ J ( E 4 ) J(E_4) J ( E 4 )
S T 0 \mathrm{ST}^0 S T 0 ≃ \simeq ≃ S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Splits over the number field Q ( b ) ≃ \Q (b) \simeq Q ( b ) ≃ 4.0.432.1 with defining polynomial: x 4 − 3 x 2 + 3 x^{4} - 3 x^{2} + 3 x 4 − 3 x 2 + 3
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes: y 2 = x 3 − g 4 / 48 x − g 6 / 864 y^2 = x^3 - g_4 / 48 x - g_6 / 864 y 2 = x 3 − g 4 / 4 8 x − g 6 / 8 6 4 with g 4 = − 480 b 3 + 672 b 2 + 576 b − 1008 g_4 = -480 b^{3} + 672 b^{2} + 576 b - 1008 g 4 = − 4 8 0 b 3 + 6 7 2 b 2 + 5 7 6 b − 1 0 0 8 g 6 = − 16704 b 3 + 19008 b 2 + 29952 b − 39744 g_6 = -16704 b^{3} + 19008 b^{2} + 29952 b - 39744 g 6 = − 1 6 7 0 4 b 3 + 1 9 0 0 8 b 2 + 2 9 9 5 2 b − 3 9 7 4 4 Conductor norm: 1024 y 2 = x 3 − g 4 / 48 x − g 6 / 864 y^2 = x^3 - g_4 / 48 x - g_6 / 864 y 2 = x 3 − g 4 / 4 8 x − g 6 / 8 6 4 with g 4 = 480 b 3 + 672 b 2 − 576 b − 1008 g_4 = 480 b^{3} + 672 b^{2} - 576 b - 1008 g 4 = 4 8 0 b 3 + 6 7 2 b 2 − 5 7 6 b − 1 0 0 8 g 6 = 16704 b 3 + 19008 b 2 − 29952 b − 39744 g_6 = 16704 b^{3} + 19008 b^{2} - 29952 b - 39744 g 6 = 1 6 7 0 4 b 3 + 1 9 0 0 8 b 2 − 2 9 9 5 2 b − 3 9 7 4 4 Conductor norm: 1024
magma: HeuristicDecompositionFactors(C);
Not of GL 2 \GL_2 GL 2 -type over Q \Q Q
Endomorphism ring over Q \Q Q :
End ( J ) \End (J_{}) E n d ( J ) ≃ \simeq ≃ Z \Z Z End ( J ) ⊗ Q \End (J_{}) \otimes \Q E n d ( J ) ⊗ Q ≃ \simeq ≃ Q \Q Q End ( J ) ⊗ R \End (J_{}) \otimes \R E n d ( J ) ⊗ R ≃ \simeq ≃ R \R R
Smallest field over which all endomorphisms are defined:
Galois number field K = Q ( a ) ≃ K = \Q (a) \simeq K = Q ( a ) ≃ 8.0.2985984.1 with defining polynomial x 8 − 2 x 7 + 2 x 6 − 2 x 5 + 7 x 4 − 10 x 3 + 8 x 2 − 4 x + 1 x^{8} - 2 x^{7} + 2 x^{6} - 2 x^{5} + 7 x^{4} - 10 x^{3} + 8 x^{2} - 4 x + 1 x 8 − 2 x 7 + 2 x 6 − 2 x 5 + 7 x 4 − 1 0 x 3 + 8 x 2 − 4 x + 1
Not of GL 2 \GL_2 GL 2 -type over Q ‾ \overline{\Q} Q
Endomorphism ring over Q ‾ \overline{\Q} Q :
End ( J Q ‾ ) \End (J_{\overline{\Q}}) E n d ( J Q ) ≃ \simeq ≃ a non-Eichler order of index 4 4 4 in a maximal order of End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q ≃ \simeq ≃ M 2 ( \mathrm{M}_2( M 2 ( Q \Q Q ) ) ) End ( J Q ‾ ) ⊗ R \End (J_{\overline{\Q}}) \otimes \R E n d ( J Q ) ⊗ R ≃ \simeq ≃ M 2 ( R ) \mathrm{M}_2 (\R) M 2 ( R )
Over subfield F ≃ F \simeq F ≃ Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 ) with generator 16 11 a 7 − 2 a 6 + 21 11 a 5 − 23 11 a 4 + 9 a 3 − 105 11 a 2 + 83 11 a − 30 11 \frac{16}{11} a^{7} - 2 a^{6} + \frac{21}{11} a^{5} - \frac{23}{11} a^{4} + 9 a^{3} - \frac{105}{11} a^{2} + \frac{83}{11} a - \frac{30}{11} 1 1 1 6 a 7 − 2 a 6 + 1 1 2 1 a 5 − 1 1 2 3 a 4 + 9 a 3 − 1 1 1 0 5 a 2 + 1 1 8 3 a − 1 1 3 0 with minimal polynomial x 2 + 1 x^{2} + 1 x 2 + 1 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ − 1 ] \Z [\sqrt{-1}] Z [ − 1 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ C \C C
Sato Tate group:
E 4 E_4 E 4 Of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ Q ( 3 ) \Q(\sqrt{3}) Q ( 3 ) with generator 2 a 7 − 4 a 6 + 3 a 5 − 3 a 4 + 13 a 3 − 19 a 2 + 11 a − 4 2 a^{7} - 4 a^{6} + 3 a^{5} - 3 a^{4} + 13 a^{3} - 19 a^{2} + 11 a - 4 2 a 7 − 4 a 6 + 3 a 5 − 3 a 4 + 1 3 a 3 − 1 9 a 2 + 1 1 a − 4 with minimal polynomial x 2 − 3 x^{2} - 3 x 2 − 3 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z \Z Z End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q \Q Q End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R \R R
Sato Tate group:
J ( E 2 ) J(E_2) J ( E 2 ) Not of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 ) with generator 18 11 a 7 − 2 a 6 + 14 11 a 5 − 19 11 a 4 + 10 a 3 − 92 11 a 2 + 48 11 a − 9 11 \frac{18}{11} a^{7} - 2 a^{6} + \frac{14}{11} a^{5} - \frac{19}{11} a^{4} + 10 a^{3} - \frac{92}{11} a^{2} + \frac{48}{11} a - \frac{9}{11} 1 1 1 8 a 7 − 2 a 6 + 1 1 1 4 a 5 − 1 1 1 9 a 4 + 1 0 a 3 − 1 1 9 2 a 2 + 1 1 4 8 a − 1 1 9 with minimal polynomial x 2 − x + 1 x^{2} - x + 1 x 2 − x + 1 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z \Z Z End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q \Q Q End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R \R R
Sato Tate group:
J ( E 2 ) J(E_2) J ( E 2 ) Not of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ Q ( ζ 12 ) \Q(\zeta_{12}) Q ( ζ 1 2 ) with generator 3 11 a 7 − a 6 + 6 11 a 5 − 5 11 a 4 + 2 a 3 − 52 11 a 2 + 19 11 a − 7 11 \frac{3}{11} a^{7} - a^{6} + \frac{6}{11} a^{5} - \frac{5}{11} a^{4} + 2 a^{3} - \frac{52}{11} a^{2} + \frac{19}{11} a - \frac{7}{11} 1 1 3 a 7 − a 6 + 1 1 6 a 5 − 1 1 5 a 4 + 2 a 3 − 1 1 5 2 a 2 + 1 1 1 9 a − 1 1 7 with minimal polynomial x 4 − x 2 + 1 x^{4} - x^{2} + 1 x 4 − x 2 + 1 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ − 1 ] \Z [\sqrt{-1}] Z [ − 1 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ C \C C
Sato Tate group:
E 2 E_2 E 2 Of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ 4.0.432.1 with generator 9 11 a 7 − 2 a 6 + 18 11 a 5 − 15 11 a 4 + 6 a 3 − 112 11 a 2 + 57 11 a − 21 11 \frac{9}{11} a^{7} - 2 a^{6} + \frac{18}{11} a^{5} - \frac{15}{11} a^{4} + 6 a^{3} - \frac{112}{11} a^{2} + \frac{57}{11} a - \frac{21}{11} 1 1 9 a 7 − 2 a 6 + 1 1 1 8 a 5 − 1 1 1 5 a 4 + 6 a 3 − 1 1 1 1 2 a 2 + 1 1 5 7 a − 1 1 2 1 with minimal polynomial x 4 − 3 x 2 + 3 x^{4} - 3 x^{2} + 3 x 4 − 3 x 2 + 3 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ an order of index 2 2 2 in Z × Z \Z \times \Z Z × Z End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q \Q Q × \times × Q \Q Q End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Sato Tate group:
J ( E 1 ) J(E_1) J ( E 1 ) Of
GL 2 \GL_2 GL 2 -type, not simple
Over subfield F ≃ F \simeq F ≃ 4.2.1728.1 with generator − 8 11 a 7 + a 6 − 5 11 a 5 + 6 11 a 4 − 4 a 3 + 47 11 a 2 − 14 11 a + 4 11 -\frac{8}{11} a^{7} + a^{6} - \frac{5}{11} a^{5} + \frac{6}{11} a^{4} - 4 a^{3} + \frac{47}{11} a^{2} - \frac{14}{11} a + \frac{4}{11} − 1 1 8 a 7 + a 6 − 1 1 5 a 5 + 1 1 6 a 4 − 4 a 3 + 1 1 4 7 a 2 − 1 1 1 4 a + 1 1 4 with minimal polynomial x 4 − 2 x 3 − 2 x + 1 x^{4} - 2 x^{3} - 2 x + 1 x 4 − 2 x 3 − 2 x + 1 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ 2 ] \Z [\sqrt{2}] Z [ 2 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( 2 ) \Q(\sqrt{2}) Q ( 2 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Sato Tate group:
J ( E 1 ) J(E_1) J ( E 1 ) Of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ 4.2.1728.1 with generator − a 7 + a 6 − a 5 + a 4 − 6 a 3 + 4 a 2 − 3 a + 1 -a^{7} + a^{6} - a^{5} + a^{4} - 6 a^{3} + 4 a^{2} - 3 a + 1 − a 7 + a 6 − a 5 + a 4 − 6 a 3 + 4 a 2 − 3 a + 1 with minimal polynomial x 4 − 2 x 3 − 2 x + 1 x^{4} - 2 x^{3} - 2 x + 1 x 4 − 2 x 3 − 2 x + 1 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ Z [ 2 ] \Z [\sqrt{2}] Z [ 2 ] End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q ( 2 ) \Q(\sqrt{2}) Q ( 2 ) End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Sato Tate group:
J ( E 1 ) J(E_1) J ( E 1 ) Of
GL 2 \GL_2 GL 2 -type, simple
Over subfield F ≃ F \simeq F ≃ 4.0.432.1 with generator 9 11 a 7 − a 6 + 7 11 a 5 − 15 11 a 4 + 5 a 3 − 46 11 a 2 + 24 11 a − 21 11 \frac{9}{11} a^{7} - a^{6} + \frac{7}{11} a^{5} - \frac{15}{11} a^{4} + 5 a^{3} - \frac{46}{11} a^{2} + \frac{24}{11} a - \frac{21}{11} 1 1 9 a 7 − a 6 + 1 1 7 a 5 − 1 1 1 5 a 4 + 5 a 3 − 1 1 4 6 a 2 + 1 1 2 4 a − 1 1 2 1 with minimal polynomial x 4 − 3 x 2 + 3 x^{4} - 3 x^{2} + 3 x 4 − 3 x 2 + 3 :
End ( J F ) \End (J_{F}) E n d ( J F ) ≃ \simeq ≃ an order of index 2 2 2 in Z × Z \Z \times \Z Z × Z End ( J F ) ⊗ Q \End (J_{F}) \otimes \Q E n d ( J F ) ⊗ Q ≃ \simeq ≃ Q \Q Q × \times × Q \Q Q End ( J F ) ⊗ R \End (J_{F}) \otimes \R E n d ( J F ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Sato Tate group:
J ( E 1 ) J(E_1) J ( E 1 ) Of
GL 2 \GL_2 GL 2 -type, not simple
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);