Properties

Label 4608.c.27648.1
Conductor 46084608
Discriminant 27648-27648
Mordell-Weil group Z/2ZZ/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z
Sato-Tate group J(E4)J(E_4)
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(R)\mathrm{M}_2(\R)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
End(J)Q\End(J) \otimes \Q Q\Q
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

y2=x5x4+x2xy^2 = x^5 - x^4 + x^2 - x (homogenize, simplify)
y2=x5zx4z2+x2z4xz5y^2 = x^5z - x^4z^2 + x^2z^4 - xz^5 (dehomogenize, simplify)
y2=x5x4+x2xy^2 = x^5 - x^4 + x^2 - x (homogenize, minimize)

Copy content sage:R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 1, 0, -1, 1]), R([]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 1, 0, -1, 1], R![]);
 
Copy content sage:X = HyperellipticCurve(R([0, -1, 1, 0, -1, 1]))
 
Copy content magma:X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: N N  ==  46084608 == 2932 2^{9} \cdot 3^{2}
Copy content magma:Conductor(LSeries(C)); Factorization($1);
 
Discriminant: Δ \Delta  ==  27648-27648 == 21033 - 2^{10} \cdot 3^{3}
Copy content magma:Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

I2 I_2  == 2424 ==  233 2^{3} \cdot 3
I4 I_4  == 72-72 ==  2332 - 2^{3} \cdot 3^{2}
I6 I_6  == 180-180 ==  22325 - 2^{2} \cdot 3^{2} \cdot 5
I10 I_{10}  == 108108 ==  2233 2^{2} \cdot 3^{3}
J2 J_2  == 4848 ==  243 2^{4} \cdot 3
J4 J_4  == 288288 ==  2532 2^{5} \cdot 3^{2}
J6 J_6  == 1024-1024 ==  210 - 2^{10}
J8 J_8  == 33024-33024 ==  28343 - 2^{8} \cdot 3 \cdot 43
J10 J_{10}  == 2764827648 ==  21033 2^{10} \cdot 3^{3}
g1 g_1  == 92169216
g2 g_2  == 11521152
g3 g_3  == 256/3-256/3

Copy content sage:C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
Copy content magma:IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

Aut(X)\mathrm{Aut}(X)\simeq C2C_2
Copy content magma:AutomorphismGroup(C); IdentifyGroup($1);
 
Aut(XQ)\mathrm{Aut}(X_{\overline{\Q}})\simeq D4D_4
Copy content magma:AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: (1:0:0),(0:0:1),(1:0:1),(1:0:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1)
All points: (1:0:0),(0:0:1),(1:0:1),(1:0:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1)
All points: (1:0:0),(0:0:1),(1:0:1),(1:0:1)(1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1)

Copy content magma:[C![-1,0,1],C![0,0,1],C![1,0,0],C![1,0,1]]; // minimal model
 
Copy content magma:[C![-1,0,1],C![0,0,1],C![1,0,0],C![1,0,1]]; // simplified model
 

Number of rational Weierstrass points: 44

Copy content magma:#Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

Copy content magma:f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: Z/2ZZ/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

Copy content magma:MordellWeilGroupGenus2(Jacobian(C));
 

Generator D0D_0 Height Order
(0:0:1)(1:0:0)(0 : 0 : 1) - (1 : 0 : 0) xx == 0,0, yy == 00 00 22
(1:0:1)(1:0:0)(-1 : 0 : 1) - (1 : 0 : 0) x+zx + z == 0,0, yy == 00 00 22
(1:0:1)+(1:0:1)2(1:0:0)(-1 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) (xz)(x+z)(x - z) (x + z) == 0,0, yy == 00 00 22
Generator D0D_0 Height Order
(0:0:1)(1:0:0)(0 : 0 : 1) - (1 : 0 : 0) xx == 0,0, yy == 00 00 22
(1:0:1)(1:0:0)(-1 : 0 : 1) - (1 : 0 : 0) x+zx + z == 0,0, yy == 00 00 22
(1:0:1)+(1:0:1)2(1:0:0)(-1 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) (xz)(x+z)(x - z) (x + z) == 0,0, yy == 00 00 22
Generator D0D_0 Height Order
(0:0:1)(1:0:0)(0 : 0 : 1) - (1 : 0 : 0) xx == 0,0, yy == 00 00 22
(1:0:1)(1:0:0)(-1 : 0 : 1) - (1 : 0 : 0) x+zx + z == 0,0, yy == 00 00 22
(1:0:1)+(1:0:1)2(1:0:0)(-1 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0) (xz)(x+z)(x - z) (x + z) == 0,0, yy == 00 00 22

2-torsion field: Q(3)\Q(\sqrt{-3})

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: 00
Mordell-Weil rank: 00
2-Selmer rank:33
Regulator: 1 1
Real period: 13.75615 13.75615
Tamagawa product: 4 4
Torsion order:8 8
Leading coefficient: 0.859759 0.859759
Analytic order of Ш: 1 1   (rounded)
Order of Ш:square

Local invariants

Prime ord(NN) ord(Δ\Delta) Tamagawa Root number* L-factor Cluster picture Tame reduction?
22 99 1010 22 11^* 11 no
33 22 33 22 11 1+3T21 + 3 T^{2} yes

Galois representations

For primes 5\ell \ge 5 the Galois representation data has not been computed for this curve since it is not generic.

For primes 3\ell \le 3, the image of the mod-\ell Galois representation is listed in the table below, whenever it is not all of GSp(4,F)\GSp(4,\F_\ell).

Prime \ell mod-\ell image Is torsion prime?
22 2.360.2 yes
33 3.540.5 no

Sato-Tate group

ST\mathrm{ST}\simeq J(E4)J(E_4)
ST0\mathrm{ST}^0\simeq SU(2)\mathrm{SU}(2)

Decomposition of the Jacobian

Splits over the number field Q(b)\Q (b) \simeq 4.0.432.1 with defining polynomial:
  x43x2+3x^{4} - 3 x^{2} + 3

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  y2=x3g4/48xg6/864y^2 = x^3 - g_4 / 48 x - g_6 / 864 with
  g4=480b3+672b2+576b1008g_4 = -480 b^{3} + 672 b^{2} + 576 b - 1008
  g6=16704b3+19008b2+29952b39744g_6 = -16704 b^{3} + 19008 b^{2} + 29952 b - 39744
   Conductor norm: 1024
  y2=x3g4/48xg6/864y^2 = x^3 - g_4 / 48 x - g_6 / 864 with
  g4=480b3+672b2576b1008g_4 = 480 b^{3} + 672 b^{2} - 576 b - 1008
  g6=16704b3+19008b229952b39744g_6 = 16704 b^{3} + 19008 b^{2} - 29952 b - 39744
   Conductor norm: 1024

Copy content magma:HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of GL2\GL_2-type over Q\Q

Endomorphism ring over Q\Q:

End(J)\End (J_{})\simeqZ\Z
End(J)Q\End (J_{}) \otimes \Q \simeqQ\Q
End(J)R\End (J_{}) \otimes \R\simeq R\R

Smallest field over which all endomorphisms are defined:
Galois number field K=Q(a)K = \Q (a) \simeq 8.0.2985984.1 with defining polynomial x82x7+2x62x5+7x410x3+8x24x+1x^{8} - 2 x^{7} + 2 x^{6} - 2 x^{5} + 7 x^{4} - 10 x^{3} + 8 x^{2} - 4 x + 1

Not of GL2\GL_2-type over Q\overline{\Q}

Endomorphism ring over Q\overline{\Q}:

End(JQ)\End (J_{\overline{\Q}})\simeqa non-Eichler order of index 44 in a maximal order of End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q
End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q \simeqM2(\mathrm{M}_2(Q\Q))
End(JQ)R\End (J_{\overline{\Q}}) \otimes \R\simeq M2(R)\mathrm{M}_2 (\R)

Remainder of the endomorphism lattice by field

Over subfield FF \simeq Q(1)\Q(\sqrt{-1}) with generator 1611a72a6+2111a52311a4+9a310511a2+8311a3011\frac{16}{11} a^{7} - 2 a^{6} + \frac{21}{11} a^{5} - \frac{23}{11} a^{4} + 9 a^{3} - \frac{105}{11} a^{2} + \frac{83}{11} a - \frac{30}{11} with minimal polynomial x2+1x^{2} + 1:

End(JF)\End (J_{F})\simeqZ[1]\Z [\sqrt{-1}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(1)\Q(\sqrt{-1})
End(JF)R\End (J_{F}) \otimes \R\simeq C\C
  Sato Tate group: E4E_4
  Of GL2\GL_2-type, simple

Over subfield FF \simeq Q(3)\Q(\sqrt{3}) with generator 2a74a6+3a53a4+13a319a2+11a42 a^{7} - 4 a^{6} + 3 a^{5} - 3 a^{4} + 13 a^{3} - 19 a^{2} + 11 a - 4 with minimal polynomial x23x^{2} - 3:

End(JF)\End (J_{F})\simeqZ\Z
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ\Q
End(JF)R\End (J_{F}) \otimes \R\simeq R\R
  Sato Tate group: J(E2)J(E_2)
  Not of GL2\GL_2-type, simple

Over subfield FF \simeq Q(3)\Q(\sqrt{-3}) with generator 1811a72a6+1411a51911a4+10a39211a2+4811a911\frac{18}{11} a^{7} - 2 a^{6} + \frac{14}{11} a^{5} - \frac{19}{11} a^{4} + 10 a^{3} - \frac{92}{11} a^{2} + \frac{48}{11} a - \frac{9}{11} with minimal polynomial x2x+1x^{2} - x + 1:

End(JF)\End (J_{F})\simeqZ\Z
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ\Q
End(JF)R\End (J_{F}) \otimes \R\simeq R\R
  Sato Tate group: J(E2)J(E_2)
  Not of GL2\GL_2-type, simple

Over subfield FF \simeq Q(ζ12)\Q(\zeta_{12}) with generator 311a7a6+611a5511a4+2a35211a2+1911a711\frac{3}{11} a^{7} - a^{6} + \frac{6}{11} a^{5} - \frac{5}{11} a^{4} + 2 a^{3} - \frac{52}{11} a^{2} + \frac{19}{11} a - \frac{7}{11} with minimal polynomial x4x2+1x^{4} - x^{2} + 1:

End(JF)\End (J_{F})\simeqZ[1]\Z [\sqrt{-1}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(1)\Q(\sqrt{-1})
End(JF)R\End (J_{F}) \otimes \R\simeq C\C
  Sato Tate group: E2E_2
  Of GL2\GL_2-type, simple

Over subfield FF \simeq 4.0.432.1 with generator 911a72a6+1811a51511a4+6a311211a2+5711a2111\frac{9}{11} a^{7} - 2 a^{6} + \frac{18}{11} a^{5} - \frac{15}{11} a^{4} + 6 a^{3} - \frac{112}{11} a^{2} + \frac{57}{11} a - \frac{21}{11} with minimal polynomial x43x2+3x^{4} - 3 x^{2} + 3:

End(JF)\End (J_{F})\simeqan order of index 22 in Z×Z\Z \times \Z
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ\Q ×\times Q\Q
End(JF)R\End (J_{F}) \otimes \R\simeq R×R\R \times \R
  Sato Tate group: J(E1)J(E_1)
  Of GL2\GL_2-type, not simple

Over subfield FF \simeq 4.2.1728.1 with generator 811a7+a6511a5+611a44a3+4711a21411a+411-\frac{8}{11} a^{7} + a^{6} - \frac{5}{11} a^{5} + \frac{6}{11} a^{4} - 4 a^{3} + \frac{47}{11} a^{2} - \frac{14}{11} a + \frac{4}{11} with minimal polynomial x42x32x+1x^{4} - 2 x^{3} - 2 x + 1:

End(JF)\End (J_{F})\simeqZ[2]\Z [\sqrt{2}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(2)\Q(\sqrt{2})
End(JF)R\End (J_{F}) \otimes \R\simeq R×R\R \times \R
  Sato Tate group: J(E1)J(E_1)
  Of GL2\GL_2-type, simple

Over subfield FF \simeq 4.2.1728.1 with generator a7+a6a5+a46a3+4a23a+1-a^{7} + a^{6} - a^{5} + a^{4} - 6 a^{3} + 4 a^{2} - 3 a + 1 with minimal polynomial x42x32x+1x^{4} - 2 x^{3} - 2 x + 1:

End(JF)\End (J_{F})\simeqZ[2]\Z [\sqrt{2}]
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ(2)\Q(\sqrt{2})
End(JF)R\End (J_{F}) \otimes \R\simeq R×R\R \times \R
  Sato Tate group: J(E1)J(E_1)
  Of GL2\GL_2-type, simple

Over subfield FF \simeq 4.0.432.1 with generator 911a7a6+711a51511a4+5a34611a2+2411a2111\frac{9}{11} a^{7} - a^{6} + \frac{7}{11} a^{5} - \frac{15}{11} a^{4} + 5 a^{3} - \frac{46}{11} a^{2} + \frac{24}{11} a - \frac{21}{11} with minimal polynomial x43x2+3x^{4} - 3 x^{2} + 3:

End(JF)\End (J_{F})\simeqan order of index 22 in Z×Z\Z \times \Z
End(JF)Q\End (J_{F}) \otimes \Q \simeqQ\Q ×\times Q\Q
End(JF)R\End (J_{F}) \otimes \R\simeq R×R\R \times \R
  Sato Tate group: J(E1)J(E_1)
  Of GL2\GL_2-type, not simple

Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

Copy content magma:HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

Copy content magma:HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);