Family Information
Genus: | $13$ |
Quotient genus: | $0$ |
Group name: | $C_3:C_4$ |
Group identifier: | $[12,1]$ |
Signature: | $[ 0; 2, 2, 4, 4, 4, 4 ]$ |
Conjugacy classes for this refined passport: | $2, 2, 4, 4, 4, 4$ |
Jacobian variety group algebra decomposition: | $E\times A_{4}\times A_{8}$ |
Corresponding character(s): | $2, 3, 5$ |
Other Data
Hyperelliptic curve(s): | no |
Cyclic trigonal curve(s): | no |
Generating vector(s)
Displaying 4 of 4 generating vectors for this refined passport.
13.12-1.0.2-2-4-4-4-4.1.1
(1,4) (2,5) (3,6) (7,10) (8,11) (9,12) | |
(1,4) (2,5) (3,6) (7,10) (8,11) (9,12) | |
(1,7,4,10) (2,9,5,12) (3,8,6,11) | |
(1,7,4,10) (2,9,5,12) (3,8,6,11) | |
(1,9,4,12) (2,8,5,11) (3,7,6,10) | |
(1,9,4,12) (2,8,5,11) (3,7,6,10) |
13.12-1.0.2-2-4-4-4-4.1.2
(1,4) (2,5) (3,6) (7,10) (8,11) (9,12) | |
(1,4) (2,5) (3,6) (7,10) (8,11) (9,12) | |
(1,7,4,10) (2,9,5,12) (3,8,6,11) | |
(1,9,4,12) (2,8,5,11) (3,7,6,10) | |
(1,7,4,10) (2,9,5,12) (3,8,6,11) | |
(1,8,4,11) (2,7,5,10) (3,9,6,12) |
13.12-1.0.2-2-4-4-4-4.1.3
(1,4) (2,5) (3,6) (7,10) (8,11) (9,12) | |
(1,4) (2,5) (3,6) (7,10) (8,11) (9,12) | |
(1,7,4,10) (2,9,5,12) (3,8,6,11) | |
(1,9,4,12) (2,8,5,11) (3,7,6,10) | |
(1,9,4,12) (2,8,5,11) (3,7,6,10) | |
(1,7,4,10) (2,9,5,12) (3,8,6,11) |
13.12-1.0.2-2-4-4-4-4.1.4
(1,4) (2,5) (3,6) (7,10) (8,11) (9,12) | |
(1,4) (2,5) (3,6) (7,10) (8,11) (9,12) | |
(1,7,4,10) (2,9,5,12) (3,8,6,11) | |
(1,9,4,12) (2,8,5,11) (3,7,6,10) | |
(1,8,4,11) (2,7,5,10) (3,9,6,12) | |
(1,9,4,12) (2,8,5,11) (3,7,6,10) |